0000000000409030

AUTHOR

Gerald R. Crabtree

showing 1 related works from this author

An essential switch in subunit composition of a chromatin remodeling complex during neural development.

2007

Summary Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Kruppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-…

Cellular differentiationProtein subunitNeuroscience(all)Molecular Sequence DataNeuroepithelial CellsDEVBIONerve Tissue ProteinsBiologyChromatin remodelingMOLNEUROEpigenesis Genetic03 medical and health sciencesMice0302 clinical medicineMultienzyme ComplexesAnimalsAmino Acid SequenceProgenitor cell030304 developmental biologyNeurons0303 health sciencesGeneral NeuroscienceMultipotent Stem CellsGene Expression Regulation DevelopmentalCell DifferentiationChromatin Assembly and DisassemblySTEMCELLNeural stem cellChromatinCell biologyNeuroepithelial cellProtein SubunitsNeural developmentNeuroglia030217 neurology & neurosurgeryTranscription FactorsNeuron
researchProduct