0000000000409350

AUTHOR

Charles A. West

Stimulation of regional lymphatic and blood flow by epicutaneous oxazolone.

The application of the epicutaneous antigen oxazolone results in persistent induration and erythema; however, the relative changes in lymph and blood flow in the inflammatory skin are largely unknown. To define the contribution of lymph and blood flow to the clinical appearance of cutaneous inflammation, we studied the sheep ear after the application of oxazolone. As a model for the study of these changes, the sheep ear had several experimental advantages: 1) a simplified superficial vascular network, 2) defined lymphatic drainage, and 3) an avascular and alymphatic cartilaginous barrier. Lymph flow was continuously monitored by cannulation of the prescapular efferent lymph duct. Blood flo…

research product

Microangiectasias: Structural regulators of lymphocyte transmigration

The migration of lymphocytes into inflammatory tissue requires the migrating cell to overcome mechanical forces produced by blood flow. A generally accepted hypothesis is that these forces are overcome by a multistep sequence of adhesive interactions between lymphocytes and endothelial cells. This hypothesis has been recently challenged by results demonstrating wall shear stress on the order of 20 dyn/cm 2 in vivo and infrequent lymphocyte–endothelial adhesion at wall shear stress >1–2 dyn/cm 2 in vitro . Here, we show that lymphocyte slowing and transmigration in the skin is associated with microangiectasias, i.e., focal structural dilatations of microvessel segments. Microangiectasias…

research product

Dynamic deformation of migratory efferent lymph-derived cells ?trapped? in the inflammatory microcirculation

The cellular immune response depends on the delivery of lymphocytes from the lymph node to the peripheral site of antigenic challenge. During their passage through the inflammatory microcirculaton, the migratory cells can become transiently immobilized or "trapped" in small caliber vessels. In this report, we used intravital microscopy and temporal area mapping to define the dynamic deformation of efferent lymph-derived mononuclear cells trapped in the systemic inflammatory microcirculation. Mononuclear cells obtained from the efferent lymph draining the oxazolone-stimulated microcirculation were labeled with fluorescent dye and reinjected into the feeding arterial circulation. Intravital v…

research product

Focal topographic changes in inflammatory microcirculation associated with lymphocyte slowing and transmigration

Microcirculation is the primary mechanism for delivering lymphocytes to inflammatory tissues. Blood flow within microvessels ensures a supply of lymphocytes at the blood-endothelial interface. Whether the structure of the inflammatory microcirculation facilitates lymphocyte transmigration is less clear. To illuminate the microcirculatory changes associated with lymphocyte transmigration, we used intravital videomicroscopy to examine the dermal microcirculation after application of the epicutaneous antigen oxazolone. Intravascular injection of fluorescein-labeled dextran demonstrated focal topographic changes in the microcirculation. These focal changes had the appearance of loops or hairpin…

research product