0000000000410209

AUTHOR

David Massoubre

showing 3 related works from this author

Cascadability and reshaping properties of a saturable absorber inserted inside a RZ transmission line for future 160-Gbit/s all-optical 2R-regenerato…

2007

International audience; In this prospective work, we analyze the behavior of a quantum-well microcavity saturable absorber component cascaded into a 100-km SMF RZ transmission line in order to annihilate the ghost-pulse phenomenon in the following simplified “...010101...” 160-Gbit/s 2-bit pattern at 1555 nm. Recirculating-loop experiments show a maximal ghost-pulse extinction up to 11.6 dB as well as an intensity extinction ratio enhancement higher than 6 dB over at least 800 km of propagation.

Optical fiberMaterials scienceOptical fiberOptical communication02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticsSaturable absorberlawTransmission line0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringPhysical and Theoretical ChemistryHigh bit rate[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Extinction ratiobusiness.industrySaturable absorptionOptical microcavityAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsExtinction (optical mineralogy)Optical regenerationbusinessSignal regenerationOptics Communications
researchProduct

All-optical extinction-ratio enhancement of a 160 GHz pulse train by a saturable-absorber vertical microcavity

2006

International audience; A vertical-access passive all-optical gate has been used to improve the extinction ratio of a 160 GHz pico-second pulse train at 1555 nm. An extinction ratio enhancement of 6 dB is observed within an 8 nm bandwidth. Such a device is a promising candidate for low-cost all optical reamplication and reshaping (211) regeneration at 160 Gbits/s.

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Materials scienceExtinction ratiobusiness.industryNonlinear opticsSaturable absorption02 engineering and technology01 natural sciencesPulse shapingAtomic and Molecular Physics and Optics[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]010309 optics020210 optoelectronics & photonicsOptics[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]0103 physical sciences0202 electrical engineering electronic engineering information engineeringPulse wavePhotonicsbusinessUltrashort pulseQuantum well
researchProduct

Cascadability and efficiency of a saturable absorber device inserted into a SMF transmission line for future 160-Gbit/s all-optical reshaping applica…

2007

In this prospective work, we analyze the cascadability and reshaping properties of a quantum well microcavity saturable absorber (SA) device cascaded inside a RZ-signal SMF-based transmission line to annihilate the ghost-pulse phenomenon taking place in the "...01010101..." 160-Gbit/s 2-bit pattern.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Extinction ratiobusiness.industryPhysics::Opticschemistry.chemical_elementSaturable absorption02 engineering and technology021001 nanoscience & nanotechnologyErbium020210 optoelectronics & photonicsElectric power transmissionOpticschemistryGigabitTime-division multiplexingTransmission line0202 electrical engineering electronic engineering information engineering0210 nano-technologybusinessQuantum wellComputingMilieux_MISCELLANEOUS
researchProduct