0000000000411770
AUTHOR
Violeta Tudor
A new mixed-valence hexanuclear cobalt complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O: Synthesis, crystal structure and magnetic properties
A new Co II /Co III hexanuclear complex, [Co 4 II Co 2 III (dea) 2 (Hdea) 4 )(piv) 4 ](ClO 4 ) 2 ·H 2 O 1 , has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H 2 dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ 3 and four μ 2 alkoxo bridges as well as by four syn – syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {Co II 4 Co III 2 (μ 2 -O) 4 (μ 3 -O) 4 } core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoo…
Heterometallic CoII-CoIII-MII alkoxido-bridged heptanuclear motifs (M = Cu, Zn). Syntheses, crystal structures and magnetic properties
Two new alkoxido-bridged heterometallic complexes of formula [CoIICoIII 3CuII 3(dea)6(CH3COO)3](ClO4)0.75(CH3COO)1.25 (1) and [CoII 2CoIII 2ZnII 3(tea)2(piv)6(CH3O)2(OH)2(CH3OH)2]·H2O 2 (H2dea=diethanolamine, H3tea=triethanolamine and Hpiv=pivalic acid) have been assembled using aminoalcohol ligands. The cationic core in 1 possesses a threefold crystallographic axis, and it exhibits a set of three copper(II), one cobalt(II) and three cobalt(III) ions arranged as a hexagon of alternating copper(II) and cobalt(III) ions around the central cobalt(II) ion. Each edge of the hexagon is defined by a double alkoxido bridge, the outer one being bis-monodentate with copper(II)-cobalt(III) pair wherea…
New alkoxo-bridged mixed-valence cobalt clusters: Synthesis, crystal structures and magnetic properties
Two new Co II /Co III complexes, [{Co II Co III (mea) 3 } 2 (bpe) 3 ](ClO 4 ) 4 · 1.5CH 3 OH · 1.5H 2 O ( 1 ) and [ Co 4 II Co 3 III ( dea ) 6 ( CH 3 COO ) 3 ] ( ClO 4 ) 0.75 ( CH 3 COO ) 1.25 · 0.5 H 2 O ( 2 ) [Hmea = monoethanolamine H 2 dea = diethanolamine and bpe = 1,2-bis(4-pyridyl)ethane], have been obtained by reacting cobalt(II) perchlorate ( 1 and 2 ), Hmea ( 1 )/H 2 dea ( 2 ), bpe ( 1 ) and sodium acetate ( 2 ). The crystal structures of 1 and 2 have been solved by single crystal X-ray diffraction. Crystal 1 contains “Chinese lantern”-like shaped cations, resulting by connecting two {Co II Co III (mea) 3 } moieties with three flexible bpe ligands. The coordination sphere of the …
A new ferromagnetically coupled μ-alkoxo–μ-acetato copper(II) trinuclear complex: [Cu3(H2tea)(Htea)(CH3COO)2](ClO4) (H3tea=triethanolamine)
Abstract A μ-alkoxo–μ-acetato trinuclear copper(II) complex, [Cu3(H2tea)(Htea)(CH3COO)2](ClO4) 1, has been synthesized by reacting copper(II) perchlorate, triethanolamine and sodium acetate. The unit cell contains two centrosymmetric, crystallographically independent trinuclear Cu(II) complexes and two ClO 4 - ions. The crystallographically independent trinuclear Cu(II) complexes differ mainly in some of their geometry parameters. The coordination environment of the central copper atom is square-planar, in one trinuclear entity, and elongated octahedral in the other one (in this last case, the coordination number of the central copper atom increases through the semicoordination of an oxygen…
Intramolecular versus intermolecular exchange pathways in the binuclear complex [Cu2(H2tea)2(4,4′-bipy)](ClO4)2·3H2O (H3tea=triethanolamine and 4,4′-bipy=4,4′-bipyridine)
Abstract The binuclear copper(II) complex of formula [Cu2(H2tea)2(4,4′-bipy)](ClO4)2·3H2O (1) (H3tea=triethanolamine and 4,4′-bipy=4,4′-bipyridine) has been isolated and characterized by X-ray diffraction. Its structure consists of dinuclear [Cu2(H2tea)2(4,4′-bipy)]2+ cations, uncoordinated perchlorate anions and crystallization water molecules. Each copper atom exhibits a trigonal-bipyramidal environment with the three triethanolamine-oxygen atoms building the equatorial plane, and the triethanolamine-nitrogen and one of the 4,4′-bipy nitrogen atoms defining the three-fold axis. The 4,4′-bipy molecule acts as a bismonodentate bridging ligand, the copper–copper separation across it being 11…
CCDC 1550041: Experimental Crystal Structure Determination
Related Article: Eliza Martin, Violeta Tudor, Augustin M. Madalan, Catalin Maxim, Floriana Tuna, Francesc Lloret, Miguel Julve, Marius Andruh|2017|Inorg.Chim.Acta|475|98|doi:10.1016/j.ica.2017.05.077
CCDC 1550042: Experimental Crystal Structure Determination
Related Article: Eliza Martin, Violeta Tudor, Augustin M. Madalan, Catalin Maxim, Floriana Tuna, Francesc Lloret, Miguel Julve, Marius Andruh|2017|Inorg.Chim.Acta|475|98|doi:10.1016/j.ica.2017.05.077