0000000000413631

AUTHOR

Elazar Y. Gutmanas

showing 6 related works from this author

Influence of polymer content in Ca-deficient hydroxyapatite–polycaprolactone nanocomposites on the formation of microvessel-like structures

2009

Calcium phosphate (CaP) ceramics are widely used in bone tissue engineering due to their good osteoconductivity. The mechanical properties of CaP can be modified by the addition of small volume fractions of biodegradable polymers such as polycaprolactone (PCL). Nevertheless, it is also important to evaluate how the polymer content influences cell-material or cell-cell interactions because of potential consequences for bone regeneration and vascularization. In this study we assessed the general biocompatibilty of Ca-deficient hydroxyapatite (CDHA)-PCL disks containing nominally 11 and 24% polycaprolactone using human umbilical vein endothelial cells and human primary osteoblasts. Confocal mi…

Materials scienceAngiogenesisPolyestersBiomedical EngineeringNeovascularization Physiologicchemistry.chemical_elementBiocompatible Materialsmacromolecular substancesCalciumBiochemistryUmbilical veinNanocompositeslaw.inventionBiomaterialschemistry.chemical_compoundConfocal microscopylawHumansBone regenerationMolecular BiologyMicrovesselCell ProliferationOsteoblastsReverse Transcriptase Polymerase Chain Reactiontechnology industry and agricultureEndothelial CellsGeneral MedicineAlkaline Phosphataseequipment and suppliesmusculoskeletal systemBiodegradable polymerCoculture TechniquesDurapatitechemistryMicrovesselsPolycaprolactoneCalciumBiomarkersBiotechnologyBiomedical engineeringActa Biomaterialia
researchProduct

Mesenchymal stem cell proliferation and differentiation on load-bearing trabecular Nitinol scaffolds.

2013

Bone tissue regeneration in load-bearing regions of the body requires high-strength porous scaffolds capable of supporting angiogenesis and osteogenesis. 70% porous Nitinol (NiTi) scaffolds with a regular 3-D architecture resembling trabecular bone were produced from Ni foams using an original reactive vapor infiltration technique. The "trabecular Nitinol" scaffolds possessed a high compressive strength of 79 MPa and high permeability of 6.9×10(-6) cm2. The scaffolds were further modified to produce a near Ni-free surface layer and evaluated in terms of Ni ion release and human mesenchymal stem cell (hMSC) proliferation (AlamarBlue), differentiation (alkaline phosphatase activity, ALP) and …

Materials scienceAngiogenesisSurface PropertiesBiomedical EngineeringNeovascularization PhysiologicBone tissueBiochemistryLoad bearingBiomaterialsExtracellular matrixOsteogenesisMaterials TestingmedicineAlloysHumansMesenchymal stem cell proliferationMolecular BiologyCells CulturedCell ProliferationOsteoblastsTissue ScaffoldsGuided Tissue RegenerationMesenchymal stem cellEndothelial CellsCell DifferentiationMesenchymal Stem CellsGeneral MedicineEquipment DesignEquipment Failure Analysismedicine.anatomical_structureNickel titaniumBone SubstitutesAlkaline phosphataseBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications.

2018

Abstract An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-Ag2O powder blends followed by cold sintering – high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550 °C resulted in enhanced ductility without coarsening the nanostructure. The strength in compression of Fe5Ag and Fe10Ag nanocomposites was several-fold higher than the values reported for similar composites with mic…

Materials scienceNanostructureHot TemperatureSilverAnnealing (metallurgy)Cell SurvivalIronBiomedical EngineeringSinteringMetal Nanoparticles02 engineering and technology010402 general chemistry01 natural sciencesCorrosionBiomaterialsFlexural strengthVancomycinNano-ElectrochemistryHumansComposite materialMechanical PhenomenaDrug CarriersNanocompositeOsteoblasts021001 nanoscience & nanotechnologyGrain size0104 chemical sciencesCorrosionDrug LiberationMechanics of Materials0210 nano-technologyJournal of the mechanical behavior of biomedical materials
researchProduct

Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe–Mg metal phase

2015

The use of beta-tricalcium phosphate (β-TCP) ceramic as a bioresorbable bone substitute is limited to non-load-bearing sites by the material׳s brittleness and low bending strength. In the present work, new biocompatible β-TCP-based composites with improved mechanical properties were developed via reinforcing the ceramic matrix with 30 vol% of a biodegradable iron-magnesium metallic phase. β-TCP-15Fe15Mg and β-TCP-24Fe6Mg (vol%) composites were fabricated using a combination of high energy attrition milling, cold sintering/high pressure consolidation of powders at room temperature and annealing at 400 °C. The materials synthesized had a hierarchical nanocomposite structure with a nanocrystal…

Calcium PhosphatesMaterials scienceIronComposite numberBiomedical EngineeringSinteringBiocompatible Materials02 engineering and technology010402 general chemistryCeramic matrix composite01 natural sciencesCell LineBiomaterialsFlexural strengthMaterials TestingHumansMagnesiumCeramicComposite materialMechanical PhenomenaOsteoblastsNanocompositeEndothelial Cells021001 nanoscience & nanotechnologyMicrostructureNanocrystalline material0104 chemical sciencesMechanics of Materialsvisual_artvisual_art.visual_art_medium0210 nano-technologyJournal of the Mechanical Behavior of Biomedical Materials
researchProduct

Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

2017

In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The…

Calcium PhosphatesMaterials scienceSinteringBioengineeringBiocompatible Materials02 engineering and technology010402 general chemistry01 natural sciencesCorrosionNanocompositesBiomaterialsMetalWeight-BearingBrittlenessFlexural strengthAbsorbable ImplantsMaterials TestingGalvanic cellPressureHumansComposite materialchemistry.chemical_classificationNanocompositePolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materialsvisual_artvisual_art.visual_art_medium0210 nano-technologyMaterials scienceengineering. C, Materials for biological applications
researchProduct

Dense drug-eluting biodegradable Fe-Ag nanocomposites

2021

Abstract Biodegradable metals in orthopedics are aimed to eliminate secondary the surgical intervention for implant removal, and thus improve patient compliance, reduce surgery costs and the risk of infections. In addition, biodegradable implants could be loaded with different drugs to prevent the growth of pathogens and the development of bone infections, kill remaining cancer cells after tumor resection or stimulate bone regeneration. However, drugs undergo thermal decomposition under the conditions of conventional metal fabrication processes. In this work, we describe the fabrication of a dense drug-eluting biodegradable Fe-Ag nanocomposite containing 10 vol% of Ag and loaded with the an…

DrugMaterials scienceLocal drug deliverymedia_common.quotation_subjectCold sinteringTumor resection02 engineering and technology010402 general chemistry01 natural sciencesImplant removalBone biomaterialsDrug-eluting metalsmedicineGeneral Materials ScienceBone regenerationPatient complianceMaterials of engineering and construction. Mechanics of materialsmedia_commonNanocompositeMechanical EngineeringBiodegradable implants021001 nanoscience & nanotechnology0104 chemical sciencesFe-Ag nanocompositesMechanics of MaterialsTA401-492VancomycinBiodegradable metals0210 nano-technologyBiomedical engineeringmedicine.drugMaterials & Design
researchProduct