0000000000414253

AUTHOR

Manfred K. Grieshaber

Allosteric Models for Multimeric Proteins:  Oxygen-Linked Effector Binding in Hemocyanin

In many crustaceans, changing concentrations of several low molecular weight compounds modulates hemocyanin oxygen binding, resulting in lower or higher oxygen affinities of the pigment. The nonphysiological effector caffeine and the physiological modulator urate, the latter accumulating in the hemolymph of the lobster Homarus vulgaris during hypoxia, increase hemocyanin oxygen affinity and decrease cooperativity of oxygen binding. To derive a model that describes the mechanism of allosteric interaction between hemocyanin and oxygen in the presence of urate or caffeine, studies of oxygen, urate, and caffeine binding to hemocyanin were performed. Exposure of lobster hemocyanin to various pH …

research product

Binding of urate and caffeine to hemocyanin of the lobster Homarus vulgaris (E.) as studied by isothermal titration calorimetry.

Hemocyanin serves as an oxygen carrier in the hemolymph of the European lobster Homarus vulgaris. The oxygen binding behavior of the pigment is modulated by metabolic effectors such as lactate and urate. Urate and caffeine binding to 12-meric hemocyanin (H. vulgaris) was studied using isothermal titration calorimetry (ITC). Binding isotherms were determined for fully oxygenated hemocyanin between pH 7.55 and 8.15. No pH dependence of the binding parameters could be found for either effector. Since the magnitude of the Bohr effect depends on the urate concentration, the absence of any pH dependence of urate and caffeine binding to oxygenated hemocyanin suggests two conformations of the pigme…

research product