0000000000415410
AUTHOR
Nizar Lajnef
Data Compression Approach for Long-Term Monitoring of Pavement Structures
Pavement structures are designed to withstand continuous damage during their design life. Damage starts as soon as the pavement is open to traffic and increases with time. If maintenance activities are not considered in the initial design or considered but not applied during the service life, damage will grow to a point where rehabilitation may be the only and most expensive option left. In order to monitor the evolution of damage and its severity in pavement structures, a novel data compression approach based on cumulative measurements from a piezoelectric sensor is presented in this paper. Specifically, the piezoelectric sensor uses a thin film of polyvinylidene fluoride to sense the ener…
Validation of a Novel Sensing Approach for Continuous Pavement Monitoring Using Full-Scale APT Testing
The objective of this paper is to present a novel approach for the continuous monitoring of pavement condition through the use of combined piezoelectric sensing and novel condition-based interpretation methods. The performance of the developed approach is validated for the detection of bottom-up fatigue cracking through full-scale accelerated pavement testing (APT). The innovative piezoelectric sensors are installed at the bottom of a thin 102 mm (4 in.) asphalt layer. The structure is then loaded until failure (up to 1 million loading cycles in this study). The condition-based approach, used in this work, does not rely on stain measurements and allows users to bypass the need for any struc…
Monitoring road pavement performance through a novel data processing approach, accelerated pavement test results
This research presents a novel performance-based interpretation method for continuous monitoring of pavement condition through the use of piezoelectric sensors. The objective of this study is to validate the compressed cumulative loading event approach, implemented in a previously developed piezoelectric sensor, for detecting subsurface fatigue cracking through full-scale accelerated pavement testing. A piezo-electric film of polyvinylidene fluoride is used to harvest the microstrain energy induced by the traffic loading at the surface. Epoxy is used to protect the sensor following a H-shape packaging. Piezoelectric sensors were exposed to approximately 1.0 million load repetitions between …