0000000000417196
AUTHOR
Michael Gaft
15. Spectroscopic methods applied to zircon
Natural and synthetic (pure and doped) zircon (ZrSiO4) have been studied with a variety of spectroscopic techniques. These techniques are based on different physical phenomena, for instance transitions between spin states of nuclei and electrons, energetic transitions of valence electrons, intra-molecular vibrations, or vibrations of atoms and molecular units in the lattice. All of the diverse spectroscopic techniques, however, have in common that they probe energy differences between a ground and excited states, mostly upon interaction of the mineral with incident radiation. Such interactions are not only determined by the excited elementary particles or molecules themselves but depend gre…
Spectroscopic methods applied to zircon
Natural and synthetic (pure and doped) zircon (ZrSiO4) have been studied with a variety of spectroscopic techniques. These techniques are based on different physical phenomena, for instance transitions between spin states of nuclei and electrons, energetic transitions of valence electrons, intra-molecular vibrations, or vibrations of atoms and molecular units in the lattice. All of the diverse spectroscopic techniques, however, have in common that they probe energy differences between a ground and excited states, mostly upon interaction of the mineral with incident radiation. Such interactions are not only determined by the excited elementary particles or molecules themselves but depend gre…