0000000000417397

AUTHOR

Alexander Panov

showing 1 related works from this author

Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols.

2017

Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low p…

0301 basic medicineAntioxidantPhysiologymedicine.medical_treatmentdinitrosyl iron complexesMitochondrionmedicine.disease_causelcsh:PhysiologyNitric oxide03 medical and health scienceschemistry.chemical_compoundnitric oxidePhysiology (medical)medicineHydrogen peroxideOriginal Researchchemistry.chemical_classificationReactive oxygen specieslcsh:QP1-981SuperoxideNitrosylationelectron spin resonancenitrosothiolsmitochondria030104 developmental biologychemistryBiophysicssuperoxideOxidative stressFrontiers in physiology
researchProduct