0000000000417438

AUTHOR

Michael Keith

0000-0001-5567-5492

showing 2 related works from this author

Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

2019

Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…

Known Pulsars010504 meteorology & atmospheric sciencesAstronomyAstrophysicsTable (information)Velagravitational waves; pulsars01 natural sciencesPulsar0103 physical sciencesLimit (mathematics)010303 astronomy & astrophysicsgravitational waveComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesPhysics[PHYS]Physics [physics]Gravitational waveTwo HarmonicsAstronomy and AstrophysicsGravitational Waves Known Pulsars Two Harmonics ErratumLIGOAmplitudegravitational wavesSpace and Planetary SciencepulsarsErratumGlitch (astronomy)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysical Journal
researchProduct

Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

2020

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…

Gravitational waves; Neutron stars; Pulsars; Gravitational wave sources010504 meteorology & atmospheric sciencesAstronomyAstrophysicsVela01 natural sciencesGeneral Relativity and Quantum Cosmology[SPI]Engineering Sciences [physics]neutronMillisecond pulsaremission010303 astronomy & astrophysicsQCQBSettore FIS/01Physicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]PhysicsAstrophysics::Instrumentation and Methods for Astrophysics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational-Waves Pulsars Neutron StarsGravitational wavePROPER MOTIONProper motiongr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNeutron starGeneral Relativity and Quantum Cosmology (gr-qc)Gravitational-WavesGravitational wavesNeutron starsSEARCHESSettore FIS/05 - Astronomia e AstrofisicaPulsar0103 physical sciencesPulsar[CHIM]Chemical SciencesAstrophysiqueSTFCPulsarsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesGravitational wave sourcescrab pulsarGravitational waveCrab PulsarRCUKAstronomy and AstrophysicsNeutron StarsGravitational waves Neutron stars Pulsars Gravitational wave sourcesLIGONeutron starSpace and Planetary Science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct