0000000000418599
AUTHOR
S. Marrone
High Resolution Spectroscopy ofBΛ12by Electroproduction
An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed \lam{12}{B} spectrum shows for the first time identifiable strength in the core-excited region between the ground-state {\it s}-wave $\Lambda$ peak and the 11 MeV {\it p}-wave $\Lambda$ peak.
Pulse shape analysis of liquid scintillators for neutron studies
The acquisition of signals from liquid scintillators with Flash ADC of high sampling rate ð 1G S=sÞ has been investigated. The possibility to record the signal waveform is of great advantage in studies with g’s and neutrons in a high count-rate environment, as it allows to easily identify and separate pile-up events. The shapes of pulses produced by g-rays and neutrons have been studied for two different liquid scintillators, NE213 and C6D6: A 1-parameter fitting procedure is proposed, which allows to extract information on the particle type and energy. The performance of this method in terms of energy resolution and n=g discrimination is analyzed, together with the capability to identify a…
Neutron capture cross section measurements for nuclear astrophyisics at CERN n_TOF
A series of neutron capture cross section measurements of interest to nuclear astrophysics have been recently performed at n_TOF, the neutron spallation source operating at CERN. The low repetition frequency of the proton beam driver, the extremely high instantaneous neutron flux, and the low background conditions in the experimental area are optimal for capture cross section measurements on low-mass or radioactive samples. An overview of the measurements performed during the two experimental campaigns in 2002 and 2003 is presented with special emphasis on the measurement of the capture cross sections of the Os isotopes relevant for the cosmochronology based on the Re/Os clock. http://www.s…
Neutron measurements for advanced nuclear systems: The n_TOF project at CERN
A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…
Pulse shape analysis of signals from BaF2 and CeF3 scintillators for neutron capture experiments
The scope of this work is to study the characteristics of BaF2 and CeF3 signals using fast digitizers, which allow the sampling of the signal at very high frequencies and the application of the fitting method for analysis of the recorded pulses. By this procedure particle identification and the reconstruction of pile-up events can be improved, while maintaining the energy and time-of-flight resolution as compared to traditional methods. The reliability of the technique and problems connected with data acquisition are discussed with respect to accurate measurements of neutron capture cross-sections.
Neutron cross section measurements at n_TOF for ADS related estudies
A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main res…
Measurement of the n-TOF beam profile with a micromegas detector
A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…
Measurement of the 151Sm n,gamma 152Sm cross section at n_TOF
The 151 Sm(n, γ ) 152 Sm cross section, which is important for the interpretation of the 151 Sm branching as an s -process thermometer, was measured from 1 eV up to 1 MeV at the innovative n_TOF facility at CERN. Based on these data, the Maxwellian-averaged cross section at k T = 30 keV is found to be 3100±160 mb. This value can be used to constrain the thermodynamical conditions in Asymptotic Giant Branch (AGB) stars during He-shell burning.
Measurements of the 90,91,92,94,96 Zr n, gamma cross-sections at n_TOF
Neutron capture cross sections of the 90,91,92,94,96Zr have been measured over the energy range from 1 eV to 1 MeV at the spallation neutron facility n TOF at CERN in 2003. The innovative features of the neutron beam, in particular the high instantaneous flux, the high energy resolution and low background, together with improvements of the neutron sensitivity of the capture detectors make this facility unique for neutron-induced reaction cross section measurements with much improved accuracy. The preliminary results of the Zr measurements show capture resonance strengths generally smaller than in previous measurements. Peer Reviewed
Spectroscopy ofLiΛ9by electroproduction
Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei provides information on the details of the effective hyperon-nucleon interaction.Purpose: To obtain a high-resolution binding-energy spectrum for the ${}^{9}\mathrm{Be}(e,{e}^{\ensuremath{'}}{K}^{+})_{\ensuremath{\Lambda}}^{9}\mathrm{Li}$ reaction.Method: Electroproduction of the hypernucleus $_{\ensuremath{\Lambda}}^{9}\mathrm{Li}$ has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a $^{9}\mathrm{Be}$ target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magn…