0000000000420132

AUTHOR

Teemu Tyni

showing 4 related works from this author

Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation

2022

We consider the recovery of a potential associated with a semi-linear wave equation on Rn+1, n > 1. We show that an unknown potential a(x, t) of the wave equation ???u + aum = 0 can be recovered in a H & ouml;lder stable way from the map u|onnx[0,T] ???-> (11, avu|ac >= x[0,T])L2(oc >= x[0,T]). This data is equivalent to the inner product of the Dirichlet-to-Neumann map with a measurement function ???. We also prove similar stability result for the recovery of a when there is noise added to the boundary data. The method we use is constructive and it is based on the higher order linearization. As a consequence, we also get a uniqueness result. We also give a detailed presentation of the forw…

osittaisdifferentiaaliyhtälötGLOBAL UNIQUENESSApplied MathematicsELLIPTIC-EQUATIONS111 MathematicsRECOVERYinversio-ongelmatAnalysisCOEFFICIENTS
researchProduct

Inverse problems for elliptic equations with fractional power type nonlinearities

2020

We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.

Mathematics - Differential GeometryApplied Mathematics010102 general mathematicsType (model theory)Inverse problem01 natural sciencesFractional powerPower (physics)010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsDifferential Geometry (math.DG)Linearization35R30 35J25 35J61FOS: MathematicsApplied mathematicsOrder (group theory)0101 mathematicsAnalysisLinear equationAnalysis of PDEs (math.AP)Mathematics
researchProduct

Optimal recovery of a radiating source with multiple frequencies along one line

2020

We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.

attenuated Radon transformMultispectralRAYUniqueness theorem01 natural sciencesinversio-ongelmat44A10 (Primary) 65R32 44A60 46N40 65Z05 (Secondary)030218 nuclear medicine & medical imaging0302 clinical medicine111 MathematicsDiscrete Mathematics and CombinatoricstietokonetomografiaPharmacology (medical)INVERSIONnuclear medicineBeam hardeningPhysicsLaplace transformDetectorNumerical Analysis (math.NA)Inverse problemuniqueness theoremFunctional Analysis (math.FA)Mathematics - Functional AnalysisMultiplicative system theoremkuvantaminensovellettu matematiikkaModeling and SimulationSPECTLine (geometry)numeerinen analyysipositroniemissiotomografiaemission computed tomographyAttenuated Radon transformEmission computed tomographyControl and OptimizationLaplace transformmultispectralOpen setCollimated light03 medical and health sciencesnuclear medicine.multiplicative system theoremFOS: Mathematicsinverse source problemMathematics - Numerical Analysis0101 mathematicsAttenuation010102 general mathematicsInverse source problemRangingComputational physicsTENSOR TOMOGRAPHYPETbeam hardeningNuclear MedicineAnalysis
researchProduct

Uniqueness and stability of an inverse problem for a semi-linear wave equation

2020

We consider the recovery of a potential associated with a semi-linear wave equation on $\mathbb{R}^{n+1}$, $n\geq 1$. We show a H\"older stability estimate for the recovery of an unknown potential $a$ of the wave equation $\square u +a u^m=0$ from its Dirichlet-to-Neumann map. We show that an unknown potential $a(x,t)$, supported in $\Omega\times[t_1,t_2]$, of the wave equation $\square u +a u^m=0$ can be recovered in a H\"older stable way from the map $u|_{\partial \Omega\times [0,T]}\mapsto \langle\psi,\partial_\nu u|_{\partial \Omega\times [0,T]}\rangle_{L^2(\partial \Omega\times [0,T])}$. This data is equivalent to the inner product of the Dirichlet-to-Neumann map with a measurement fun…

Mathematics - Analysis of PDEsFOS: Mathematics35R30 35L05 35L70Analysis of PDEs (math.AP)
researchProduct