0000000000420660

AUTHOR

Friedhelm Hildebrandt

showing 2 related works from this author

A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition

2011

Mutations in genes encoding ciliary components cause ciliopathies, but how many of these mutations disrupt ciliary function is unclear. We investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel (MKS) and Joubert (JBTS) syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2, and Cc2d2a. Components of the Tectonic ciliopathy complex colocaliz…

TMEM67Inbred C57BLCiliopathiesMedical and Health SciencesMice0302 clinical medicineCerebellumMorphogenesisEye AbnormalitiesEncephalocelePediatricMice Knockout0303 health sciencesPolycystic Kidney DiseasesCiliumCiliary transition zoneBiological SciencesKidney Diseases CysticCell biologyOrgan SpecificityCiliary Motility DisordersKidney DiseasesRabbitsAbnormalitiesMultipleRetinitis PigmentosaCiliary Motility DisordersSignal TransductionKnockoutBiologyRetinaArticle03 medical and health sciencesCysticRare DiseasesCerebellar DiseasesCiliogenesisGeneticsMatrix-Assisted Laser Desorption-IonizationAnimalsHumansAbnormalities MultipleCiliaCiliary membrane030304 developmental biologySpectrometryCell MembraneMembrane ProteinsMassPeptide FragmentsMice Inbred C57BLSpectrometry Mass Matrix-Assisted Laser Desorption-IonizationMutationCiliary baseChickens030217 neurology & neurosurgeryDevelopmental BiologyNature genetics
researchProduct

Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome

2021

Background Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. Methods Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo st…

0301 basic medicineGeneticsKidneyMedizinGeneral MedicineBiologyDisease gene identificationmedicine.diseasePhenotype3. Good healthNephropathyGalloway Mowat syndrome03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureNephrologyGenetic linkagemedicineGeneNephrotic syndrome030217 neurology & neurosurgeryJournal of the American Society of Nephrology
researchProduct