0000000000422430

AUTHOR

Fei Wang

0000-0001-5106-5793

Soluble Complexes of Cobalt Oxide Fragments Bring the Unique CO2 Photoreduction Activity of a Bulk Material into the Flexible Domain of Molecular Science

The deposition of metal oxides is essential to the fabrication of numerous multicomponent solid-state devices and catalysts. However, the reproducible formation of homogeneous metal oxide films or of nanoparticle dispersions at solid interfaces remains an ongoing challenge. Here we report that molecular hexaniobate cluster anion complexes of structurally and electronically distinct fragments of cubic-spinel and monoclinic Co3O4 can serve as tractable yet well-defined functional analogues of bulk cobalt oxide. Notably, the energies of the highest-occupied and lowest-unoccupied molecular orbitals (HOMO and LUMO) of the molecular complexes, 1, closely match the valence- and conduction-band (VB…

research product

Rapid onset of mafic magmatism facilitated by volcanic edifice collapse: MAFIC MAGMATISM FACILITATED BY VOLCANIC EDIFICE COLLAPSE

Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufriere Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufriere Hills, estimated to have initiated <100 years after…

research product

CSD 2075252: Experimental Crystal Structure Determination

Related Article: Guanyun Zhang, Mark Baranov, Fei Wang, Josep M. Poblet, Sebastian Kozuch, Nitai Leffler, Alexander I. Shames, Juan M. Clemente-Juan, Alevtina Neyman, Ira A. Weinstock|2021|J.Am.Chem.Soc.|143|20769|doi:10.1021/jacs.1c08817

research product