0000000000422939

AUTHOR

S. Fahmy

showing 2 related works from this author

The polarimetric and helioseismic imager on solar orbiter

2020

This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging…

Solar Telescope010504 meteorology & atmospheric sciencesphotosphere [Sun]FiltegramsHighly elliptical orbitFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionTelescopeOrbiterPhotospherelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsHelioseismologySolar dynamo010303 astronomy & astrophysicsSun: magnetic fieldsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesSun: helioseismologyPhysics[PHYS]Physics [physics]PhotosphereEllipsometrypolarimeters [Instrumentation]Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyinstrumentation: polarimetersSun: photosphereHeliosismologiaAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxiestechniques: polarimetricmagnetic fields [Sun]Space and Planetary Sciencetechniques: imaging spectroscopyAstrophysics of Galaxies (astro-ph.GA)Physics::Space PhysicsHelioseismologyAstrophysics::Earth and Planetary AstrophysicsbusinessAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]HeliosphereEl·lipsometria
researchProduct

JEM-X: three years in space

2006

We report on the technical and scientific performance of JEM-X, the X-ray monitor on ESA's INTEGRAL mission. INTEGRAL has now been in orbit for more than three years, and the mission is foreseen to be extended until the end of 2010. Overall, JEM-X performs very well, and can be expected to continue to do so for the duration of the mission. We discuss in some detail the operational experiences and the problems encountered with the microstrip detectors caused by the space environment and give one example of the interesting scientific results obtained. The analysis software is still being improved on, and we discuss briefly the significance of these improvements.

PhysicsSoftwareOpticsbusiness.industrySystems engineeringOrbit (dynamics)Analysis softwareDuration (project management)Orbital mechanicsSpace (commercial competition)businessSilicon microstrip detectorsSpace environmentSPIE Proceedings
researchProduct