Architectures and Protocols for Flexible Physical Layers in Wireless Networks
Emerging wireless technologies are characterized by an increasing level of flexibility and programmability, not only in terms of core network functionalities, with the consolidated paradigms of software-defined-networks and function virtualization, but also in terms of radio access functionalities. Although the concept of software-defined PHY and MAC protocols is not new, exploiting flexibility at the lower layers of the protocol stack is not an easy task, because of complexity and performance constraints. Indeed, dealing with software-defined implementations of the radio implies managing complex software routines, often tightly inter-dependent and difficult to reuse, and poses some perform…
'Good to Repeat': Making Random Access Near-Optimal with Repeated Contentions
Recent advances on WLAN technology have been focused mostly on boosting network capacity by means of a more efficient and flexible physical layer. A new concept is required at MAC level to exploit fully the new capabilities of the PHY layer. In this article, we propose a contention mechanism based on Repeated Contentions (ReCo) in frequency domain. It provides a simple-to-configure, robust and short-term fair algorithm for the random contention component of the MAC protocol. The throughput efficiency of ReCo is not sensitive to the number of contending stations, so that ReCo does not require adaptive tuning of the access parameters for performance optimization. Efficiency and robustness is …
No Reservations Required: Achieving Fairness between Wi-Fi and NR-U with Self-Deferral Only
Wireless technologies coexisting in unlicensed bands should receive a fair share of the available channel resources, even when they use different access methods. We consider the problem of coexistence between Wi-Fi and New Radio Unlicensed (NR-U) nodes, which employ, respectively, a random and scheduled access scheme. The latter typically resorts to reservation signals (RSs), which allow keeping the control of the channel until the start of the next synchronized slot. This mechanism, although effective for increasing the channel access opportunities of scheduled-based nodes, is also a waste of channel resources. We investigate alternative solutions, based on self-deferral only. We built ana…
A Navigation and Augmented Reality System for Visually Impaired People
In recent years, we have assisted with an impressive advance in augmented reality systems and computer vision algorithms, based on image processing and artificial intelligence. Thanks to these technologies, mainstream smartphones are able to estimate their own motion in 3D space with high accuracy. In this paper, we exploit such technologies to support the autonomous mobility of people with visual disabilities, identifying pre-defined virtual paths and providing context information, reducing the distance between the digital and real worlds. In particular, we present ARIANNA+, an extension of ARIANNA, a system explicitly designed for visually impaired people for indoor and outdoor localizati…
Random access with repeated contentions for emerging wireless technologies
In this paper we propose ReCo, a robust contention scheme for emerging wireless technologies, whose efficiency is not sensitive to the number of contending stations and to the settings of the contention parameters (such as the contention windows and retry limits). The idea is iterating a basic contention mechanism, devised to select a sub-set of stations among the contending ones, in consecutive elimination rounds, before performing a transmission attempt. Elimination rounds can be performed in the time or frequency domain, with different overheads, according to the physical capabilities of the nodes. Closed analytical formulas are given to dimension the number of contention rounds in order…
Performance of LoRa for Bike-Sharing Systems
Today bike sharing systems are becoming popular in many cities as short-distance transit vehicles. More than 18 million bicycles are available worldwide for public use and one of the main problems that afflicts such sharing systems is the loss of bikes, which can be stolen or simply left in unknown locations. Thus, many bikes are docked or tracked using GPS and costly cellular connections. In this paper, we consider the emerging Long Range (LoRa) technology for use in bike sharing systems. LoRa exploits free ISM bands and has been conceived for low power and low data rate applications. Additionally, LoRa is characterized by large cells and heterogeneous application domains, which may lead t…
An Indoor and Outdoor Navigation System for Visually Impaired People
In this paper, we present a system that allows visually impaired people to autonomously navigate in an unknown indoor and outdoor environment. The system, explicitly designed for low vision people, can be generalized to other users in an easy way. We assume that special landmarks are posed for helping the users in the localization of pre-defined paths. Our novel approach exploits the use of both the inertial sensors and the camera integrated into the smartphone as sensors. Such a navigation system can also provide direction estimates to the tracking system to the users. The success of out approach is proved both through experimental tests performed in controlled indoor environments and in r…
Making WiFi work in multi-hop topologies: Automatic negotiation and allocation of airtime
We propose a solution for mitigating the performance impairments of CSMA/CA protocols in multi-hop topologies based on the dynamic adaptation of the contention process experienced by nodes in a wireless network. A distributed protocol is used to negotiate the channel airtime for a node as a function of the traffic requirements of its neighbourhood, taking into account bandwidth reserved for the control operations. A mechanism is provided for a node to tune its contention window depending on its allocated airtime. Different from previous schemes, a node's contention window is fixed in size unless the traffic requirements of its neighbourhood change. The scheme is implemented on legacy commer…
Demo - Dynamic Adaptations of WiFi Channel Widths Without TX/RX Coordination
Most modern standards for wireless communications support physical layer adaptations, in terms of dynamic selection of channel central frequency, transmission power, modulation format, etc., in order to increase link robustness under time-varying propagation and interference conditions. In this demo, we demonstrate that another powerful solution for extending physical layer flexibility in OFDM-based technologies is the dynamic adaptation of the channel width. Although some standards already define the possibility of utilizing multiple channel widths (e.g. 20MHz, 10MHz, 5MHz for IEEE 802.11a standards), such an utilization is limited to a static configuration of a value defined during the ne…
Downlink channel access performance of NR-U: Impact of numerology and mini-slots on coexistence with Wi-Fi in the 5 GHz band
Coexistence between cellular systems and Wi-Fi gained the attention of the research community when LTE License Assisted Access (LAA) entered the unlicensed band. The recent introduction of NR-U as part of 5G introduces new coexistence opportunities because it implements scalable numerology (flexible subcarrier spacing and OFDM symbol lengths), and non-slot based scheduling (mini-slots), which considerably impact channel access. This paper analyzes the impact of NR-U settings on its coexistence with Wi-Fi networks and compares it with LAA operation using simulations and experiments. First, we propose a downlink channel access simulation model, which addresses the problem of the dependency an…
A cultural heritage experience for visually impaired people
Abstract In recent years, we have assisted to an impressive advance of computer vision algorithms, based on image processing and artificial intelligence. Among the many applications of computer vision, in this paper we investigate on the potential impact for enhancing the cultural and physical accessibility of cultural heritage sites. By using a common smartphone as a mediation instrument with the environment, we demonstrate how convolutional networks can be trained for recognizing monuments in the surroundings of the users, thus enabling the possibility of accessing contents associated to the monument itself, or new forms of fruition for visually impaired people. Moreover, computer vision …