0000000000424149

AUTHOR

Bruce E. Tabashnik

showing 7 related works from this author

Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis

1997

Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a …

Bacterial ToxinsPopulationBacillus thuringiensisGenetically modified cropsMothsGenomic ImprintingHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGenetic variationAnimalsAllelePest Control BiologicaleducationGeneticseducation.field_of_studyMultidisciplinaryDiamondback mothBacillus thuringiensis Toxinsbiologybusiness.industryGenetic Complementation TestfungiPest controlfood and beveragesChromosome MappingGenetic VariationPlutellaBiological Sciencesbiology.organism_classificationEndotoxinsFemalebusinessProtein Binding
researchProduct

Immunohistochemical Detection of Binding of Cryia Crystal Proteins of Bacillus thuringiensis in Highly Resistant Strains of Plutella xylostella (L.) …

1995

We detected binding of insecticidal crystal proteins from Bacillus thuringiensis in one susceptible strain and six resistant strains of diamondback moth, Plutella xylostella, from Hawaii. Immunohistochemical tests with tissue sections from larval midguts showed specific binding of CryIA(a), CryIA(b), and CryIA(c) to brush border membranes. CryIE, which is not toxic to P. xylostella, did not bind to midgut tissues. Larvae from one of the resistant strains ingested extremely high concentrations of a commercial formulation containing the three CryIA proteins without suffering midgut cell damage or mortality. This same resistant strain had previously been found to have greatly reduced binding o…

Brush borderBacterial ToxinsBacillus thuringiensisBiophysicsMothsHemolysin ProteinsBiochemistryEpitheliumHawaiiInsecticide ResistanceHemolysin ProteinsBacterial ProteinsIn vivoBacillus thuringiensisBotanyAnimalsPest Control BiologicalMolecular BiologyDiamondback mothBacillus thuringiensis ToxinsMicrovillibiologyStrain (chemistry)fungiPlutellaMidgutCell Biologybiology.organism_classificationImmunohistochemistryMolecular biologyEndotoxinsLarvaBiochemical and Biophysical Research Communications
researchProduct

Integrative Model for Binding of Bacillus thuringiensis Toxins in Susceptible and Resistant Larvae of the Diamondback Moth (Plutella xylostella)

1999

ABSTRACT Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptib…

Bacterial ToxinsBacillus thuringiensisGenetically modified cropsMothsApplied Microbiology and BiotechnologyBinding CompetitiveModels BiologicalHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsBinding sitePest Control BiologicalGeneticsBacillaceaeDiamondback mothBinding SitesEcologybiologyBacillus thuringiensis ToxinsParasporal bodyfungiPlutellafood and beveragesbiology.organism_classificationEndotoxinsCry1AcLarvaFood ScienceBiotechnology
researchProduct

Variation in Susceptibility to Bacillus thuringiensis Toxins among Unselected Strains of Plutella xylostella

2001

ABSTRACT So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth ( Plutella xylostella ). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected st…

Bacterial ToxinsMothsApplied Microbiology and BiotechnologyMicrobiologyToxicologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisInvertebrate MicrobiologyBioassayAnimalsDiamondback mothEcologybiologyBacillus thuringiensis ToxinsStrain (biology)Parasporal bodyfungiPlutellabiology.organism_classificationEndotoxinsBiopesticideCry1AcLarvaBiological AssayFood ScienceBiotechnology
researchProduct

Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella)

2003

Abstract Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with 125I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1…

Brush borderBacterial ToxinsBacillus thuringiensisGenetically modified cropsBinding CompetitiveBiochemistryMicrobiologyIodine RadioisotopesRadioligand AssayBacillus thuringiensisBotanyAnimalsPest Control BiologicalMolecular BiologyBinding SitesMicrovillibiologyHeliothis virescensCytoplasmic Vesiclesfungifood and beveragesPlutellabiology.organism_classificationRecombinant ProteinsLepidopteraKineticsBt cottonCry1AcLarvaInsect ScienceProtein BindingPink bollwormInsect Biochemistry and Molecular Biology
researchProduct

Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

2001

ABSTRACT Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth ( Plutella xylostella ) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that…

Bacterial ToxinsMolecular Sequence DataSpodopteraBinding CompetitiveApplied Microbiology and BiotechnologyMicrobiologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsAmino Acid SequenceBinding siteBinding SitesDiamondback mothBacillus thuringiensis ToxinsEcologybiologyHeliothis virescensfungibiology.organism_classificationEndotoxinsLepidopteraPlutellidaeCry1AcLarvaNoctuidaeFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Mitochondrial Dna Sequence Variation among Geographic Strains of Diamondback Moth (Lepidoptera: Plutellidae)

1997

We examined genetic variation among 6 geographic strains of diamondback moth, Plutella xylostella (L.), using 365 base pairs of the mitochondrial gene encoding cytochrome oxidase I (COI). No sequence variation was detected within 5 of the 6 strains; 1 strain contained 2 haplotypes that differed by a single base substitution (0.27%). Sequence differences between strains of diamondback moth from Hawaii, the Philippines, and Pennsylvania ranged from 0 to 0.82%. With one exception, base pair substitutions among strains resulted in synonymous codons and did not alter amino acid sequence. Genetic divergence between strains of diamondback moth was not correlated with geographic distances between t…

GeneticsMitochondrial DNADiamondback mothbiologyfungiPopulation geneticsPlutellabiology.organism_classificationGenetic divergenceLepidoptera genitaliaPlutellidaeInsect ScienceGenetic variationBotanyAnnals of the Entomological Society of America
researchProduct