0000000000424355

AUTHOR

Carmela Cappellano

Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2).

Abstract Biochemical and genetic data indicate that in Streptomyces coelicolor A3(2) the majority of the genes involved in the biosynthesis of histidine are clustered in a small region of the chromosome [Carere et al., Mol. Gen. Genet. 123 (1973) 219–224; Russi et al., Mol. Gen. Genet. 123 (1973) 225–232]. To investigate the structural organization and the regulation of these genes, we have constructed genomic libraries from S. coelicolor A3(2) in pUC vectors. Recombinant clones were isolated by complementation of an Escherichia coli hisBd auxotroph. A recombinant plasmid containing a 3.4-kb fragment of genomic DNA was further characterized. When cloned in the plasmid vector, pIJ699, this f…

research product

Artificial chromosomes for antibiotic-producing actinomycetes.

Bacteria belonging to the order Actinomycetales produce most microbial metabolites thus far described, several of which have found applications in medicine and agriculture. However, most strains were discovered by their ability to produce a given molecule and are, therefore, poorly characterized physiologically and genetically. Thus, methodologies for genetic manipulation of actinomycetes are not available and efficient tools have been developed for just a few strains. This constitutes a serious limitation to applying molecular genetics approaches to strain development and structural manipulation of microbial metabolites. To overcome this hurdle, we have developed bacterial artificial chrom…

research product