0000000000424797
AUTHOR
C. Cangialosi
Effects of radiation and hydrogen-loading on the performances of raman-distributed temperature fiber sensors
International audience; The integration of Raman-distributed temperature fiber-based sensors (RDTS) into the envisioned French deep geological repository for nuclear wastes, called Cigéo requires evaluating how the performances of RDTS evolve in harsh environments, more precisely in presence of H2 or γ-rays. Both H2 and radiations are shown to affect the temperature measurements made with the single-ended RDTS technology. The amplitudes of the observed effects depend on the different classes of multimode fibers varying in terms of composition and coatings. By selecting the most tolerant fiber structure for the sensing, we could maintain the RDTS performances for such application. A hardeni…
Steady state γ-ray radiation effects on Brillouin fiber sensors
International audience; Brillouin optical time-domain analysis (BOTDA) sensors offer remarkable advantages for the surveillance of the planned French deep geological radioactive wastes repository, called Cigéo1,2. In this work we study the performances of Brillouin distributed sensors in harsh environment. We evaluate the radiation tolerance of different sensor classes and their responses evolution during γ-ray exposition with 1kGy/h dose rate (to reach ~0.2MGy) and after 1, 3, 6 and 10 MGy accumulated doses. Measurements on strained Ge-doped SMF are reported to highlight the variation on Brillouin scattering proprieties, both intrinsic frequency position of Brillouin shift and its dependen…
Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors
International audience; Raman Distributed Temperature Sensors (RDTS) offer exceptional advantages for the monitoring of the envisioned French deep geological repository for nuclear wastes, called Cigéo. Here, we present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with H2 or g-rays. Both of them are shown to strongly affect the temperature measurements made with RDTS. We showed that by adapting the characteristics of the used fiber for the sensing, we could limit its degradation but that additional hardening by system studies will have to be developed before integration of RDTS in Cigéo.
Raman based distributed fiber optic temperature sensors for structural health monitoring in radiation environment
Raman distributed temperature sensor (RDTS) measurements were performed during γ-radiation on three different classes of standard multimode fibers (pure, Ge-doped and F-doped). The sensor response is affected by the radiation induced attenuation phenomena leading to errors in the temperature measurements. The amplitude of this error strongly depends on the fiber type and the irradiation conditions. These results are promising in view of the integration of these RDTS into the deep geological repository for radioactive waste.
On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor
We report distributed temperature measurements based on Raman scattering performed during steady state $\gamma $ -ray irradiation at a dose rate of 1 kGy( ${\rm SiO}_{2}$ )/h and up to a total ionizing dose (TID) of $\sim 0.1\ \hbox{MGy}$ . We characterize on-line the evolution of the performances of a single-ended Raman distributed temperature sensor (RDTS) during the $\gamma $ -ray exposure of different classes of commercial multimode fibers (MMFs) acting as the sensing element. RDTS is influenced by the radiation-induced attenuation (RIA) phenomena leading to both large errors in the temperature measurements and a diminution of the useful sensing length. The amplitude of the radiation-in…
Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties
We report that the sintering at 1000 degrees C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects' states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of …
Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment
Raman Distributed Temperature Sensors (RDTSs) offer exceptional advantages to monitor the envisioned French deep geological repository for nuclear wastes, called Cigeo. Both $\gamma $ -ray and hydrogen release from nuclear wastes can strongly affect the temperature measurements made with RDTS. We present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with $\gamma $ -rays or combined radiations and ${{\rm H}_2}$ release. The response of two standard and one radiation tolerant multimode fibers (MMFs) are investigated. In all fibers the differential induced attenuation between Stokes and anti-Stokes signal, ${({{\alpha _{\rm AS}} - {\alp…