0000000000427113
AUTHOR
A. Sergi
Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN
© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.
First observation of the rareB+→D+K+π−decay
The B+→D+K+π- decay is observed in a data sample corresponding to 3.0 fb-1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. The signal significance is 8σ and the branching fraction is measured to be B(B+→D+K+π-)=(5.31±0.90±0.48±0.35)×10-6, where the uncertainties are statistical, systematic and due to the normalization mode B+→D-K+π+, respectively. The Dalitz plot appears to be dominated by broad structures. Angular distributions are exploited to search for quasi-two-body contributions from B+→D2∗(2460)0K+ and B+→D+K∗(892)0 decays. No significant signals are observed and upper limits are set on their branching fractions.
Measurement of CP asymmetry in Bs0 → Ds ∓K± decays
Journal of high energy physics 2018(3), 59 (2018). doi:10.1007/JHEP03(2018)059
Measurement of the mass and lifetime of the Ω(−)(b) baryon
A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb$^{-1}$ collected by LHCb at $\sqrt{s}=7$ and 8 TeV, is used to reconstruct $63\pm9$ $\Omega_b^-\to\Omega_c^0\pi^-$, $\Omega_c^0\to pK^-K^-\pi^+$ decays. Using the $\Xi_b^-\to\Xi_c^0\pi^-$, $\Xi_c^0\to pK^-K^-\pi^+$ decay mode for calibration, the lifetime ratio and absolute lifetime of the $\Omega_b^-$ baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for $\tau_{\Omega_b^-}$ only). A measurement …
Search for K+→ π+νν¯ at NA62
Flavour physics is one of the most powerful fields for the search of new physics beyond the Standard Model. The kaon sector with the rare decay K+ → π+νν̅ provides one of the cleanest and most promising channels. NA62, a fixed target experiment at the CERN SPS, aims to measure BR (K+ → π+νν̅) with 10% precision to test the Standard Model validity up to an energy scale of hundreds of TeV. NA62 had dedicated data taking for the K+ → π+νν̅ measurement in 2016 and 2017 and will continue in 2018. Here preliminary results on a fraction of 2016 dataset are presented. The analysis of the complete 2016 data sample is expected to achieve the SM sensitivity.
Measurement of the Difference of Time-IntegratedCPAsymmetries inD0→K−K+andD0→π−π+Decays
A search for CP violation in $D^0 \rightarrow K^{-} K^{+} $ and $D^0 \rightarrow \pi^{-} \pi^{+} $ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of $3~fb^{-1}$, collected using the LHCb detector at centre-of-mass energies of 7 and $8~$TeV. The flavour of the charm meson is inferred from the charge of the pion in $D^{*+}\rightarrow D^0\pi^+$ and $D^{*-}\rightarrow \bar{D^0}\pi^{-}$ decays. The difference between the CP asymmetries in $D^0 \rightarrow K^{-} K^{+} $ and $D^0 \rightarrow \pi^{-} \pi^{+} $ decays, $\Delta A_{CP} \equiv A_{CP}(K^{-} K^{+}) - A_{CP}(\pi^{-} \pi^{+})$, is measured to be $\left( -0.10 \pm 0.08(stat) \pm 0.03(syst) \right) \…
First study of the CP-violating phase and decay-width difference in Bs0→ψ(2S)ϕ decays
A time-dependent angular analysis of Bs0→ψ(2S)ϕ decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb−1 collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the Bs0 system are measured to be ϕs=0.23−0.28+0.29±0.02rad and ΔΓs=0.066−0.044+0.041±0.007ps−1, respectively, where the first uncertainty is statistical and the second systematic. This is the first time that ϕs and ΔΓs have been measured in a decay containing the ψ(2S) resonance.