0000000000427753

AUTHOR

Andrew Purkiss

0000-0002-5931-3509

showing 2 related works from this author

Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization.

2020

ABSTRACTShprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional corepressor SKI, which is a negative regulator of TGF-β signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This resul…

0301 basic medicineMaleSMADmedicine.disease_causeMarfan SyndromeActivin0302 clinical medicineGenome editingTransforming Growth Factor betaGene expressionBiology (General)MutationShprintzen-Goldberg syndromeGeneral NeuroscienceQRShprintzen–Goldberg syndromeGeneral MedicineLigand (biochemistry)Chromosomes and Gene ExpressionCell biologyDNA-Binding ProteinsMedicinePhosphorylationFemaleSignal TransductionResearch ArticleHumanTGF-βQH301-705.5ScienceBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesCraniosynostosesstomatognathic systemBiochemistry and Chemical BiologyProto-Oncogene ProteinsmedicineHumansGeneral Immunology and MicrobiologyPoint mutationmedicine.diseaseSKIArachnodactyly030104 developmental biologyStructural biologyMutation030217 neurology & neurosurgerySMADTransforming growth factoreLife
researchProduct

Author response: Mutations in SKI in Shprintzen–Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization

2020

medicine.medical_specialtyEndocrinologybusiness.industryInternal medicineMedicineShprintzen–Goldberg syndromebusinessmedicine.diseaseTransforming growth factor
researchProduct