0000000000428765

AUTHOR

Peter Jahns

De-epoxidation of Violaxanthin after Reconstitution into Different Carotenoid Binding Sites of Light-harvesting Complex II

In higher plants, the de-epoxidation of violaxanthin (Vx) to antheraxanthin and zeaxanthin is required for the pH-dependent dissipation of excess light energy as heat and by that process plays an important role in the protection against photo-oxidative damage. The de-epoxidation reaction was investigated in an in vitro system using reconstituted light-harvesting complex II (LHCII) and a thylakoid raw extract enriched in the enzyme Vx de-epoxidase. Reconstitution of LHCII with varying carotenoids was performed to replace lutein and/or neoxanthin, which are bound to the native complex, by Vx. Recombinant LHCII containing either 2 lutein and 1 Vx or 1.6 Vx and 1.1 neoxanthin or 2.8 Vx per mono…

research product

De-epoxidation of Violaxanthin in Light-harvesting Complex I Proteins

The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx wa…

research product