0000000000429471

AUTHOR

Veijo Kangas

Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex.

We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm−1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance. peerReviewed

research product

EMI shielding effects of carbon nanotube cellulose nanocomposite

Electromagnetic interference shielding is an important aspect of modern communication and computer technology. Carbon nanotube cellulose nanocomposite (CNTCNC) provides a novel material as an alternative to traditional metal-based shields for EMI shielding. Stratified structures containing CNTCNC layers combined with existing commercial lossy materials (like ferrite sheets) form effective EMI shields without lowering the signal integrity performance. Significant improvement in shielding effectiveness in stacked CNTCNC layers is noteworthy. CNTCNC is essentially like paper when it comes to flexibility and hence it can be easily conformed to the mechanical structure of the device in need of s…

research product