0000000000429514
AUTHOR
René Stangenberg
A Polyphenylene Dendrimer Drug Transporter with Precisely Positioned Amphiphilic Surface Patches
The design and synthesis of a polyphenylene dendrimer (PPD 3) with discrete binding sites for lipophilic guest molecules and characteristic surface patterns is presented. Its semi-rigidity in combination with a precise positioning of hydrophilic and hydrophobic groups at the periphery yields a refined architecture with lipophilic binding pockets that accommodate defined numbers of biologically relevant guest molecules such as fatty acids or the drug doxorubicin. The size, architecture, and surface textures allow to even penetrate brain endothelial cells that are a major component of the extremely tight blood-brain barrier. In addition, low to no toxicity is observed in in vivo studies using…
Supramolecular Linear-g-Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains
Complex, reversible hyperbranched graft polymer topologies have been obtained by spontaneous self-assembly. Well-defined adamantyl- and β-cyclodextrin-functionalized polymers were employed to generate linear-g-(linear–hyperbranched) supramolecular graft terpolymers. For this purpose the synthesis of monoadamantyl-functionalized linear polyglycerols (Ada-linPG) and hyperbranched polyglycerols (Ada-hbPG) as well as poly(ethylene glycol)-block-linear polyglycerol (Ada-PEG-b-linPG) and poly(ethylene glycol)-block-hyperbranched poly(glycerol) (Ada-PEG-b-hbPG) block copolymers was established. Isothermal titration calorimetry (ITC) with β-cyclodextrin revealed a shielding effect of hyperbranched …
The Generation Effect: Cavity Accessibility in Dense‐Shell Polyphenylene Dendrimers
Size exclusion is a widespread phenomenon in supra- and macromolecular chemistry. Herein, the size exclusion properties of polyphenylene dendrimers on the surface of high fundamental frequency quartz crystal microbalances are reported. For this purpose, a new dense fifth-generation polyphenylene dendrimer, which was previously not possible owing to the high steric demand of the dendron arms, was synthesized. By increasing the volume and size of subjected analytes an affinity shift from smaller to larger dendrimers can be obtained.