0000000000429609

AUTHOR

Robert Daly

0000-0001-8072-5199

A simulation and experimental study of electrochemical pH control at gold interdigitated electrode arrays

Abstract In electroanalysis, solution pH is a critical parameter that often needs to be tailored and controlled for the detection of particular analytes. This is most commonly performed by the addition of chemicals, such as strong acids or bases. Electrochemical in-situ pH control offers the possibility for the local adjustment of pH at the point of detection, without the need for additional reagents. Finite element analysis (FEA) simulations have been performed on interdigitated electrodes, to guide experimental design in relation to both electroanalysis and in-situ control of solution pH. No previous model exists that describes the generation of protons at an interdigitated electrode arra…

research product

Simultaneous detection of copper and mercury in water samples using in-situ pH control with electrochemical stripping techniques

The performance of electrochemical sensors using an in situ pH control technique for detection of mercury and copper in neutral solutions is described herein. Sensors are comprised of two distinct parallel gold interdigitated microband electrodes each of which may be polarised separately. Biasing one interdigitated “protonator” electrode sufficiently positive to begin water electrolysis, resulted in the production of H+ ions, which, consequently droped the interfacial pH at the other second interdigitated “sensing” electrode. This decrease in pH permitted the electrodeposition (and consequent stripping) of metals at a sensing electrode without the need to acidify the whole test solution. In…

research product

A Theoretical and Experimental Study of Electrochemical pH Control at Gold Interdigitated Microband Arrays

In electroanalysis, solution pH is a critical parameter that often needs to be adjusted and controlled for the detection of particular analytes. This is most commonly performed by the addition of chemicals, such as strong acids or bases. Electrochemical in-situ pH control offers the possibility for the local adjustment of pH at the point of detection, without additional reagents. FEA simulations have been performed to guide experimental design for both electroanalysis and in-situ control of solution pH. No previous model exists that describes the generation of protons at an interdigitated electrode array in buffered solution with one comb acting as a protonator, and the other as the sensor.…

research product