0000000000431065
AUTHOR
Stéphane Clain
The modelling of the cathode sheath of an electrical arc in vacuum
This paper presents a simple model of the fragment in the cathode electrical arc root taking into account the physical phenomena occuring on the cathode surface and the sheath. The goal is the obtainment of characteristics values of the heat flux, the electrons, and atoms density in the sheath. Computation is carried out on a one-dimensional model with a coupling between the equation obtained in the sheath and an enthalpy model of the cathode to describe the temperature evolution. In the modelling, we introduce a friction zone above the sheath edge to characterize the heavy particle interactions. Numerical simulation shows that the ionic friction phenomenon deriving from ion–atom collision …
A comparative study of the behaviour of silver, copper and nickel submitted to a constant high power flux density
In this paper, we present a numerical simulation of three metal cathode (silver, copper and nickel) submitted to a constant flux power flux density ranging between and . The goal is to compare the interface evolution (vaporization and liquefaction rate, appearance time of liquid and vapour, energetic repartition) to predict the behaviour of the cathodes during an electric arc.