0000000000431109

AUTHOR

Tian-xiang Chen

showing 2 related works from this author

GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam

2021

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivi…

PhysicsCubeSatsGamma-Ray BurstsPhotonGravitational Wave counterparts010308 nuclear & particles physicsGravitational waveSpace timeQuantum gravityAstronomyTriangulation (social science)01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaAll-sky monitorObservatoryX-rays0103 physical sciencesQuantum gravityNano-satellitesTemporal triangulationGamma-ray burstQuantum foam010303 astronomy & astrophysics
researchProduct

The Large Area Detector onboard the eXTP mission

2018

The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrumen…

Silicon detectorX-ray AstronomyComputer sciencecapillary platePolarimetryFOS: Physical sciencesField of viewContext (language use)Condensed Matter Physic01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesElectroniccapillary plates; Silicon detectors; Timing; X-ray Astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTimingOptical and Magnetic MaterialsAerospace engineeringSpectral resolutionElectrical and Electronic Engineering010306 general physicscapillary plates; Silicon detectors; Timing; X-ray Astronomy; astro-ph.IM; astro-ph.IM; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)X-ray astronomycapillary plates010308 nuclear & particles physicsbusiness.industryPayloadElectronic Optical and Magnetic MaterialApplied MathematicsDetectorAntenna apertureComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsApplied MathematicSilicon detectorsAstrophysics - Instrumentation and Methods for Astrophysicsbusinessastro-ph.IM
researchProduct