0000000000431257

AUTHOR

François Golse

Derivation of a Homogenized Two-Temperature Model from the Heat Equation

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]

research product

The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Omega subset of R-3 for the velocity field u of an incompressible fluid with kinematic viscosity v and density 1. Brinkman's force consists of a source term 6 pi rvj where j is the current density of the particles, and of a friction term 6 pi vpu where rho is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Omega minus the disjoint union of N balls of radius epsilo…

research product

A Formal Passage From a System of Boltzmann Equations for Mixtures Towards a Vlasov-Euler System of Compressible Fluids

A formal asymptotics leading from a system of Boltzmann equations for mixtures towards either Vlasov-Navier-Stokes or Vlasov-Stokes equations of incompressible fluids was established by the same authors and Etienne Bernard in: A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory Commun. Math. Sci., 15: 1703–1741 (2017) and A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures. KRM, 11: 43–69 (2018). With the same starting point but with a different scaling, we establish here a formal asymptotics leading to the Vlasov-Euler system of compressible fluids. Explicit formulas for the coupling terms are obtained i…

research product

A DERIVATION OF THE VLASOV-NAVIER-STOKES MODEL FOR AEROSOL FLOWS FROM KINETIC THEORY

This article proposes a derivation of the Vlasov-Navier-Stokes system for spray/aerosol flows. The distribution function of the dispersed phase is governed by a Vlasov-equation, while the velocity field of the propellant satisfies the Navier-Stokes equations for incompressible fluids. The dynamics of the dispersed phase and of the propellant are coupled through the drag force exerted by the propellant on the dispersed phase. We present a formal derivation of this model from a multiphase Boltzmann system for a binary gaseous mixture, involving the droplets/dust particles in the dispersed phase as one species, and the gas molecules as the other species. Under suitable assumptions on the colli…

research product

Empirical measures and Vlasov hierarchies

The present note reviews some aspects of the mean field limit for Vlasov type equations with Lipschitz continuous interaction kernel. We discuss in particular the connection between the approach involving the N-particle empirical measure and the formulation based on the BBGKY hierarchy. This leads to a more direct proof of the quantitative estimates on the propagation of chaos obtained on a more general class of interacting systems in [S.Mischler, C. Mouhot, B. Wennberg, arXiv:1101.4727]. Our main result is a stability estimate on the BBGKY hierarchy uniform in the number of particles, which implies a stability estimate in the sense of the Monge-Kantorovich distance with exponent 1 on the i…

research product

A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures

In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.

research product