0000000000431257

AUTHOR

François Golse

showing 6 related works from this author

Derivation of a Homogenized Two-Temperature Model from the Heat Equation

2014

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]

01 natural sciencesHomogenization (chemistry)Heat capacity010305 fluids & plasmasTwo temperatureMathematics - Analysis of PDEsThermal nonequilibrium models0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalingMSC 35K05 35B2776T05 (35Q79 76M50)35K05 35B27 76T05 (35Q79 76M50)MathematicsNumerical AnalysisHomogenizationPartial differential equationInfinite diffusion limitApplied MathematicsHeat equationMathematical analysis010101 applied mathematicsComputational MathematicsThermal non-equilibrium modelsModeling and SimulationVolume fractionHeat equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

2008

We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Omega subset of R-3 for the velocity field u of an incompressible fluid with kinematic viscosity v and density 1. Brinkman's force consists of a source term 6 pi rvj where j is the current density of the particles, and of a friction term 6 pi vpu where rho is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Omega minus the disjoint union of N balls of radius epsilo…

Stokes equation01 natural sciencesHomogenization (chemistry)Navier-Stokes equationPhysics::Fluid DynamicsMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Boundary value problem0101 mathematicsMathematical Physics(MSC) 35Q30 35B27 76M50Particle systemPhysicsHomogenization010102 general mathematicsMathematical analysis35Q30 35B27 76M50Stokes equationsStatistical and Nonlinear Physics010101 applied mathematicsFlow velocityDragSuspension FlowsBounded functionCompressibilityBall (bearing)Navier-Stokes equationsAnalysis of PDEs (math.AP)
researchProduct

A Formal Passage From a System of Boltzmann Equations for Mixtures Towards a Vlasov-Euler System of Compressible Fluids

2019

A formal asymptotics leading from a system of Boltzmann equations for mixtures towards either Vlasov-Navier-Stokes or Vlasov-Stokes equations of incompressible fluids was established by the same authors and Etienne Bernard in: A Derivation of the Vlasov-Navier-Stokes Model for Aerosol Flows from Kinetic Theory Commun. Math. Sci., 15: 1703–1741 (2017) and A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures. KRM, 11: 43–69 (2018). With the same starting point but with a different scaling, we establish here a formal asymptotics leading to the Vlasov-Euler system of compressible fluids. Explicit formulas for the coupling terms are obtained i…

Mathematics::Analysis of PDEsBinary number01 natural sciencesCompressible flow010305 fluids & plasmasPhysics::Fluid DynamicsBoltzmann equationSpraysymbols.namesakeIncompressible flow0103 physical sciences0101 mathematicsScalingAerosolSettore MAT/07 - Fisica MatematicaMathematicsGas mixtureApplied MathematicsVlasov-Euler systemHard spheresEuler system010101 applied mathematicsClassical mechanicsBoltzmann constantsymbolsKinetic theory of gasesHydrodynamic limit
researchProduct

A DERIVATION OF THE VLASOV-NAVIER-STOKES MODEL FOR AEROSOL FLOWS FROM KINETIC THEORY

2016

This article proposes a derivation of the Vlasov-Navier-Stokes system for spray/aerosol flows. The distribution function of the dispersed phase is governed by a Vlasov-equation, while the velocity field of the propellant satisfies the Navier-Stokes equations for incompressible fluids. The dynamics of the dispersed phase and of the propellant are coupled through the drag force exerted by the propellant on the dispersed phase. We present a formal derivation of this model from a multiphase Boltzmann system for a binary gaseous mixture, involving the droplets/dust particles in the dispersed phase as one species, and the gas molecules as the other species. Under suitable assumptions on the colli…

MSC: 35Q20 35B25 (82C40 76T15 76D05)aerosolVlasov-Navier-Stokes systemGeneral Mathematics01 natural sciencesPhysics::Fluid DynamicsBoltzmann equationsymbols.namesakeMathematics - Analysis of PDEsThermal velocityPhase (matter)35Q20 35B25 (82C40 76T15 76D05)SpraysFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsSettore MAT/07 - Fisica MatematicaPhysicsPropellantAerosolsGas mixtureApplied Mathematics010102 general mathematicsMechanicsMass ratioBoltzmann equationAerosol010101 applied mathematicsDistribution functionsprayBoltzmann constantsymbolsHydrodynamic limitAnalysis of PDEs (math.AP)
researchProduct

Empirical measures and Vlasov hierarchies

2013

The present note reviews some aspects of the mean field limit for Vlasov type equations with Lipschitz continuous interaction kernel. We discuss in particular the connection between the approach involving the N-particle empirical measure and the formulation based on the BBGKY hierarchy. This leads to a more direct proof of the quantitative estimates on the propagation of chaos obtained on a more general class of interacting systems in [S.Mischler, C. Mouhot, B. Wennberg, arXiv:1101.4727]. Our main result is a stability estimate on the BBGKY hierarchy uniform in the number of particles, which implies a stability estimate in the sense of the Monge-Kantorovich distance with exponent 1 on the i…

MSC 82C05 (35F25 28A33)[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesVlasov type equation Mean-field limit Empirical measure BBGKY hierarchy Monge-Kantorovich distanceMathematics - Analysis of PDEs[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Applied mathematicsMonge-Kantorovich distanceDirect proof0101 mathematicsEmpirical measureMathematical PhysicsMean field limitMathematicsNumerical AnalysisHierarchy010102 general mathematicsVlasov type equationMathematical Physics (math-ph)Empirical measureBBGKY hierarchyLipschitz continuity010101 applied mathematicsKernel (algebra)Uniqueness theorem for Poisson's equationBBGKY hierarchyModeling and SimulationExponent82C05 (35F25 28A33)Analysis of PDEs (math.AP)Kinetic & Related Models
researchProduct

A Derivation of the Vlasov-Stokes System for Aerosol Flows from the Kinetic Theory of Binary Gas Mixtures

2016

In this short paper, we formally derive the thin spray equation for a steady Stokes gas, i.e. the equation consists in a coupling between a kinetic (Vlasov type) equation for the dispersed phase and a (steady) Stokes equation for the gas. Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, arXiv:1608.00422 [math.AP]] where the evolution of the gas is governed by the Navier-Stokes equation.

Binary numberKinetic energy01 natural sciencesBoltzmann equationPhysics::Fluid Dynamics35Q20 35B25 82C40 76T15 76D07symbols.namesakeMathematics - Analysis of PDEshydrodynamic limitPhase (matter)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]sprays0101 mathematicsSettore MAT/07 - Fisica MatematicaVlasov-Stokes systemPhysicsNumerical Analysisgas mixture.010102 general mathematicsMSC Primary: 35Q20 35B25; Secondary: 82C40 76T15 76D07.Stokes flowBoltzmann equationAerosol010101 applied mathematicsClassical mechanicsModeling and SimulationBoltzmann constantKinetic theory of gasessymbolsVlasov-Stokes system Boltzmann equation Hydrodynamic limit Aerosols Sprays Gas mixtureaerosolsAnalysis of PDEs (math.AP)
researchProduct