0000000000431396

AUTHOR

Pierre Gratier

showing 2 related works from this author

The hyperfine structure in the rotational spectrum of CF+

2012

Context. CF+ has recently been detected in the Horsehead and Orion Bar photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in contrast to other millimeter lines. The origin of this double-peak profile may be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine interactions due to the fluorine nucleus in CF+ on the rotational transitions. Methods. We compute the fluorine spin rotation constant of CF+ using high-level quantum chemical methods and determine the relative positions and intensities of each hyperfine component. This information is used to fit the theoretical hyperfine components to the observed CF+ line profiles, thereby employing the h…

AstrochemistryFOS: Physical sciencesContext (language use)Astrophysics010402 general chemistryRotation01 natural sciencesISM: clouds0103 physical sciencesSpin (physics)010303 astronomy & astrophysicsHyperfine structureAstrophysics::Galaxy AstrophysicsLine (formation)PhysicsNebularadio lines: ISMastrochemistryAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesISM: molecules0104 chemical sciences[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)ISM: individual objects: Horsehead nebula[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Atomic physicsBar (unit)
researchProduct

The 2014 KIDA network for interstellar chemistry

2015

Chemical models used to study the chemical composition of the gas and the ices in the interstellar medium are based on a network of chemical reactions and associated rate coefficients. These reactions and rate coefficients are partially compiled from data in the literature, when available. We present in this paper kida.uva.2014, a new updated version of the kida.uva public gas-phase network first released in 2012. In addition to a description of the many specific updates, we illustrate changes in the predicted abundances of molecules for cold dense cloud conditions as compared with the results of the previous version of our network, kida.uva.2011.

Physics[PHYS]Physics [physics][ PHYS ] Physics [physics]Chemical models[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsChemical reactionAstrophysics - Astrophysics of GalaxiesInterstellar medium13. Climate actionSpace and Planetary ScienceChemical physics[ SDU.ASTR.CO ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics of Galaxies (astro-ph.GA)MoleculeChemical compositionComputingMilieux_MISCELLANEOUS
researchProduct