0000000000434754

AUTHOR

B. Hallgren

showing 4 related works from this author

Search for heavy neutrinos in K + → μ + ν μ decays

2017

The NA62 experiment recorded a large sample of K+→μ+νμ decays in 2007. A peak search has been performed in the reconstructed missing mass spectrum. In the absence of a signal, limits in the range 2×10−6 to 10−5 have been set on the squared mixing matrix element |Uμ4|2 between muon and heavy neutrino states, for heavy neutrino masses in the range 300–375 MeV/ c2 . The result extends the range of masses for which upper limits have been set on the value of |Uμ4|2 in previous production search experiments.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Particle physicsMuon010308 nuclear & particles physicsPhysics beyond the Standard ModelHeavy neutrinoNA62 experiment01 natural scienceslcsh:QC1-999Heavy neutrinos; Kaon decays; Nuclear and High Energy PhysicsNuclear physicsKaon decayHeavy neutrinos0103 physical sciencesMass spectrumKaon decaysNeutrinoHeavy neutrino010306 general physicslcsh:PhysicsMixing (physics)
researchProduct

Study of the K±→π±γγ decay by the NA62 experiment

2014

Abstract A study of the dynamics of the rare decay K ± → π ± γ γ has been performed on a sample of 232 decay candidates, with an estimated background of 17.4 ± 1.1 events, collected by the NA62 experiment at CERN in 2007. The results are combined with those from a measurement conducted by the NA48/2 Collaboration at CERN. The combined model-independent branching ratio in the kinematic range z = ( m γ γ / m K ) 2 > 0.2 is B MI ( z > 0.2 ) = ( 0.965 ± 0.063 ) × 10 − 6 , and the combined branching ratio in the full kinematic range assuming a Chiral Perturbation Theory description is B ( K π γ γ ) = ( 1.003 ± 0.056 ) × 10 − 6 . A detailed comparison of the results with the previous measurements…

PhysicsNuclear and High Energy PhysicsParticle decayPionChiral perturbation theoryNuclear magnetic resonanceMesonBranching fractionHadronAnalytical chemistryElementary particleDimensionless quantityPhysics Letters B
researchProduct

Test of lepton flavour universality in K+→ℓ+ν decays

2011

Abstract A precision test of lepton flavour universality has been performed by measuring the ratio R K of kaon leptonic decay rates K + → e + ν and K + → μ + ν in a sample of 59 813 reconstructed K + → e + ν candidates with ( 8.71 ± 0.24 ) % background contamination. The result R K = ( 2.487 ± 0.013 ) × 10 − 5 is in agreement with the Standard Model expectation.

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsFlavourWidth ratioUniversality (dynamical systems)LeptonPhysics Letters B
researchProduct

Precision measurement of the ratio of the charged kaon leptonic decay rates

2013

A precision measurement of the ratio RK of the rates of kaon leptonic decays K+- --> e nu and K+- --> mu nu with the full data sample collected by the NA62 experiment at CERN in 2007-2008 is reported. The result, obtained by analysing ~150000 reconstructed K+- --> e nu candidates with 11% background contamination, is RK = (2.488+-0.010)*10^{-5}, in agreement with the Standard Model expectation.

Nuclear and High Energy PhysicsParticle physicsstandard modelFOS: Physical sciencesNA62 experiment01 natural sciencesHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)lepton universalityRare kaon decays; chiral perturbation theoryLepton universality; Charged Kaon Decay0103 physical scienceskaon decays leptonic decays lepton universality010306 general physicschiral perturbation theoryPhysicsleptonic decaysLarge Hadron Colliderkaon decays010308 nuclear & particles physicscharged kaon3. Good healthCharged Kaon DecayRare kaon decaysKaon rare decaysFull dataKaon rare decays; branching ratio; charged kaon; leptonic decays; standard modelbranching ratioParticle Physics - ExperimentLepton universality
researchProduct