0000000000435099

AUTHOR

Victoria Campuzano

0000-0001-8128-2641

showing 3 related works from this author

Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome

2020

Williams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26-28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3-4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis. Nitric oxide synthase (NOS) isoforms and oxidative stress levels were assessed. Ascending aortas from young adult CD mice showed moderate (50%) luminal stenosis, whereas endothelial function and oxidative str…

0301 basic medicineMaleWilliams SyndromeThromboxaneAdrenergiclcsh:MedicineAorta ThoracicNitric Oxide Synthase Type I030204 cardiovascular system & hematologymedicine.disease_causeAortic diseasesPhenylephrine0302 clinical medicineEthidiumMalalties hereditàrieslcsh:ScienceStenosisMultidisciplinarybiologyAnimal models in researchNitric oxide synthaseAortic Stenosis SupravalvularCardiovascular diseasesmedicine.drugGenetic diseasesmedicine.medical_specialtyNitric OxideArticle03 medical and health sciencesInternal medicinemedicine.arteryReceptors Adrenergic alpha-1Ascending aortamedicineAnimalsEstenosiPhenylephrinebusiness.industryMalalties cardiovascularslcsh:Rmedicine.diseaseValvular diseaseMice Mutant StrainsBlockadeElastinStenosisDisease Models AnimalOxidative Stress030104 developmental biologyEndocrinologybiology.proteinlcsh:QEndothelium VascularModels animals en la investigacióbusinessOxidative stressScientific Reports
researchProduct

Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion

1996

International audience; Friedreich's ataxia (FRDA) is an autosomal recessive, degenerative disease that involves the central and peripheral nervous systems and the heart. A gene, X25, was identified in the critical region for the FRDA locus on chromosome 9q13. This gene encodes a 210-amino acid protein, frataxin, that has homologs in distant species such as Caenorhabditis elegans and yeast. A few FRDA patients were found to have point mutations in X25, but the majority were homozygous for an unstable GAA trinucleotide expansion in the first X25 intron.

MaleIron-sulfur cluster assemblyPolymerase Chain Reaction0302 clinical medicineTrinucleotide RepeatsIron-Binding ProteinsGenetics0303 health sciencesMultidisciplinaryAutosomal recessive cerebellar ataxiaPedigree3. Good healthFemalemedicine.symptomChromosomes Human Pair 9HumanPair 9Heterozygotecongenital hereditary and neonatal diseases and abnormalitiesAtaxiaMolecular Sequence DataGenes RecessiveLocus (genetics)BiologyChromosomes03 medical and health sciencesGene mappingAlleles; Amino Acid Sequence; Base Sequence; Chromosomes Human Pair 9; DNA Primers; Female; Friedreich Ataxia; Genes Recessive; Heterozygote; Humans; Male; Molecular Sequence Data; Pedigree; Point Mutation; Polymerase Chain Reaction; Proteins; Sequence Alignment; Introns; Iron-Binding Proteins; Trinucleotide RepeatsmedicineRecessiveHumansPoint MutationAmino Acid SequenceAlleleAllelesDNA Primers030304 developmental biologyBase SequencePoint mutationProteins[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologymedicine.diseaseMolecular biologyIntronsGenes[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsFriedreich AtaxiaFrataxinbiology.proteinSequence Alignment030217 neurology & neurosurgeryScience
researchProduct

ALLOPURINOL BLOCKS AORTIC ANEURYSM IN A MOUSE MODEL OF MARFAN SYNDROME VIA REDUCING AORTIC OXIDATIVE STRESS

2022

ABSTRACTBackgroundIncreasing evidence indicates that redox stress participates in MFS aortopathy, though its mechanistic contribution is little known. We reported elevated reactive oxygen species (ROS) formation and NADPH oxidase NOX4 upregulation in MFS patients and mouse aortae. Here we address the contribution of xanthine oxidoreductase (XOR), which catabolizes purines into uric acid and ROS in MFS aortopathy.Methods and ResultsIn aortic samples from MFS patients, XOR protein expression, revealed by immunohistochemistry, increased in both the tunicae intima and media of the dilated zone. In MFS mice (Fbn1C1041G/+), aortic XOR mRNA transcripts and enzymatic activity of the oxidase form (X…

Marfan syndromemedicine.medical_specialtyEstrès oxidatiuAortic aneurysmsAllopurinolAllopurinolBiochemistryMarfan SyndromeMicechemistry.chemical_compoundAortic aneurysmMetal·loproteïnasesPhysiology (medical)medicine.arteryInternal medicinemedicineAnimalsAortaAortaNADPH oxidasebiologybusiness.industryConnective tissues diseasesNOX4Enzyme inhibitorsHydrogen Peroxidemedicine.diseaseMetalloproteinasesAortic AneurysmÀcid úricDisease Models AnimalOxidative StressEndocrinologyInhibidors enzimàticschemistryXanthine dehydrogenaseOxidative stressbiology.proteinUric acidMalalties del teixit connectiuAneurismes aòrticsReactive Oxygen SpeciesbusinessOxidation-ReductionUric acidmedicine.drug
researchProduct