0000000000435100

AUTHOR

Elisabet Vila

showing 5 related works from this author

Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome

2020

Williams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26-28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3-4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis. Nitric oxide synthase (NOS) isoforms and oxidative stress levels were assessed. Ascending aortas from young adult CD mice showed moderate (50%) luminal stenosis, whereas endothelial function and oxidative str…

0301 basic medicineMaleWilliams SyndromeThromboxaneAdrenergiclcsh:MedicineAorta ThoracicNitric Oxide Synthase Type I030204 cardiovascular system & hematologymedicine.disease_causeAortic diseasesPhenylephrine0302 clinical medicineEthidiumMalalties hereditàrieslcsh:ScienceStenosisMultidisciplinarybiologyAnimal models in researchNitric oxide synthaseAortic Stenosis SupravalvularCardiovascular diseasesmedicine.drugGenetic diseasesmedicine.medical_specialtyNitric OxideArticle03 medical and health sciencesInternal medicinemedicine.arteryReceptors Adrenergic alpha-1Ascending aortamedicineAnimalsEstenosiPhenylephrinebusiness.industryMalalties cardiovascularslcsh:Rmedicine.diseaseValvular diseaseMice Mutant StrainsBlockadeElastinStenosisDisease Models AnimalOxidative Stress030104 developmental biologyEndocrinologybiology.proteinlcsh:QEndothelium VascularModels animals en la investigacióbusinessOxidative stressScientific Reports
researchProduct

Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension

2019

Uric acid (UA) is a promising protective treatment in ischaemic stroke, but the precise molecular targets underlying its in vivo beneficial actions remain unclear. High concentrations of UA inhibit angiogenesis of cultured endothelial cells via Krüppel-like factor 2 (KLF)-induced downregulation of vascular endothelial growth factor (VEGF), a pro-angiogenic mediator that is able to increase blood–brain barrier (BBB) permeability in acute stroke. Here, we investigated whether UA treatment after ischaemic stroke protects brain endothelial cell functions and modulates the KLF2-VEGF-A axis. Transient intraluminal middle cerebral artery (MCA) occlusion/reperfusion was induced in adult male sponta…

0301 basic medicineMaleVascular Endothelial Growth Factor AVascular endothelial growth factor-AAngiogenesisBiochemistryRats Inbred WKYAntioxidantschemistry.chemical_compound0302 clinical medicineRats Inbred SHRIschaemic strokeEvans BlueBlood-brain barrierBrainKrüppel-like factor 2Vascular endothelial growth factorEndothelial stem cellStrokeVascular endothelial growth factor Amedicine.anatomical_structureNeuroprotective AgentsTreatment OutcomeBlood-Brain Barrier030220 oncology & carcinogenesisHypertensioncardiovascular systemmedicine.symptommedicine.medical_specialtyKruppel-Like Transcription FactorsBrain damageBlood–brain barrierNeuroprotectionCell Line03 medical and health sciencesDouble-Blind MethodInternal medicinemedicineAnimalsHumanscardiovascular diseasesPharmacologybusiness.industryRatsUric Acid030104 developmental biologyEndocrinologychemistryEndothelium VascularAngiogenesisbusinessBiomarkers
researchProduct

Increased endothelin-1 vasoconstriction in mesenteric resistance arteries after superior mesenteric ischaemia-reperfusion

2012

BACKGROUND AND PURPOSE Endothelin-1 (ET-1) plays an important role in the maintenance of vascular tone. We aimed to evaluate the influence of superior mesenteric artery (SMA) ischaemia-reperfusion (I/R) on mesenteric resistance artery vasomotor function and the mechanism involved in the changes in vascular responses to ET-1. EXPERIMENTAL APPROACH SMA from male Sprague-Dawley rats was occluded (90 min) and following reperfusion (24 h), mesenteric resistance arteries were dissected. Vascular reactivity was studied using wire myography. Protein and mRNA expression, superoxide anion (O2•−) production and ET-1 plasma concentration were evaluated by immunofluorescence, real-time quantitative PCR,…

Pharmacologymedicine.medical_specialtyEndotheliumElectrical impedance myographyChemistryEndothelial NOSEndothelin 1medicine.anatomical_structureEndocrinologymedicine.arteryInternal medicinecardiovascular systemmedicineSuperior mesenteric arterymedicine.symptomReceptorMesenteric arteriesVasoconstrictionBritish Journal of Pharmacology
researchProduct

Activation of α1A-adrenoceptors desensitizes the rat aorta response to phenylephrine through a neuronal NOS pathway, a mechanism lost with ageing

2017

Background and purpose A NO-mediated desensitization of vasoconstrictor responses evoked by stimulation of α1 -adrenoceptors has been reported in different vessels. We investigated the involvement of each α1 -adrenoceptor subtype and constitutive NOS isoforms and the influence of ageing and hypertension on this process. Experimental approach Wistar and spontaneously hypertensive rats (SHR), 16, 32, 52 and 72 weeks-old, were used to evaluate the desensitization process. Expression of α1 -adrenoceptor subtypes, endothelial NOS (eNOS) and neuronal NOS (nNOS) were determined in rat aorta and left ventricle (LV). Expression levels were also evaluated in LV of a group of heart failure patients wi…

0301 basic medicinePharmacologymedicine.medical_specialtyAortaAdrenergic receptorEndotheliumbusiness.industryAdrenergic030204 cardiovascular system & hematologyEndothelial NOS03 medical and health sciences030104 developmental biology0302 clinical medicineEndocrinologymedicine.anatomical_structureDesensitization (telecommunications)Internal medicinemedicine.arterycardiovascular systemmedicinemedicine.symptombusinessPhenylephrineVasoconstrictionmedicine.drugBritish Journal of Pharmacology
researchProduct

Different β-adrenoceptor subtypes coupling to cAMP or NO/cGMP pathways: implications in the relaxant response of rat conductance and resistance vesse…

2013

Background and Purpose To analyse the relative contribution of β1-, β2- and β3-adrenoceptors (Adrb) to vasodilatation in conductance and resistance vessels, assessing the role of cAMP and/or NO/cGMP signalling pathways. Experimental Approach Rat mesenteric resistance artery (MRA) and aorta were used to analyse the Adrb expression by real-time-PCR and immunohistochemistry, and for the pharmacological characterization of Adrb-mediated activity by wire myography and tissue nucleotide accumulation. Key Results The mRNAs and protein for all Adrb were identified in endothelium and/or smooth muscle cells (SMCs) in both vessels. In MRA, Adrb1 signalled through cAMP, Adrb3 through both cAMP and cGMP…

Pharmacologymedicine.medical_specialtyEndotheliumElectrical impedance myographyVasodilationBiologyAdenylyl cyclasechemistry.chemical_compoundmedicine.anatomical_structureEndocrinologychemistryInternal medicineIsoprenalinecardiovascular systemmedicinecAMP-dependent pathwaySoluble guanylyl cyclaseMesenteric arteriesmedicine.drugBritish Journal of Pharmacology
researchProduct