0000000000435948

AUTHOR

Maryam Nazari

showing 4 related works from this author

Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics

2020

Nitrogen-rich carbon nanodots have emerged as promising nanomaterials for a wide range of applications where a highly emissive and photoactive material with low toxicity and cost-effectiveness is required. One of their hallmarks is indeed a bright, tunable fluorescence of excitonic nature. Disentangling the origin of their optical absorption and fluorescence properties and uncovering relaxation channels and interactions with solvents are some of the most debated issues in the field. Uncovering these aspects is essential for targeted applications, especially in the fields of photocatalysis but also photovoltaics and optoelectronics. Here, we present dedicated transient absorption measurement…

Materials sciencecarbon nanodots carbon nitride surface exciton core exciton photocycle ultrafast spectroscopy exciton emission530 Physicsbusiness.industryExcitonNanotechnologyNanomaterialschemistry.chemical_compoundchemistryPhotovoltaics540 ChemistryUltrafast laser spectroscopyPhotocatalysisGeneral Materials ScienceNanodotbusinessAbsorption (electromagnetic radiation)Carbon nitrideACS Applied Nano Materials
researchProduct

Boron–nitrogen substituted dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic solar cells

2019

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron–nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-ful…

PAH-yhdisteetMaterials scienceOrganic solar cellchemistry.chemical_elementFluoreneOrganoboron chemistry010402 general chemistryPhotochemistry7. Clean energy01 natural sciencesBorylationCatalysischemistry.chemical_compoundTransmetalationMaterials ChemistryBoronaurinkokennot010405 organic chemistryDopingMetals and AlloysGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryElectrophileCeramics and CompositesvalokemiaChemical Communications
researchProduct

CCDC 1937170: Experimental Crystal Structure Determination

2019

Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A

Space GroupCrystallographyCrystal SystemCrystal Structure310-di-t-butyl-551212-tetrakis(246-trifluorophenyl)-512-dihydro[21]benzazaborolo[2'3':45]pyrazino[12-b][21]benzazaborole-613-diium-512-diideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1937169: Experimental Crystal Structure Determination

2019

Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A

Space GroupCrystallographyCrystal SystemCrystal Structure310-di-t-butyl-551212-tetrachloro-512-dihydro[21]benzazaborolo[2'3':45]pyrazino[12-b][21]benzazaborole-613-diium-512-diideCell ParametersExperimental 3D Coordinates
researchProduct