0000000000436074

AUTHOR

G. Demouchy

showing 2 related works from this author

Magnetically enhancing the Seebeck coefficient in ferrofluids.

2019

The influence of the magnetic field on the Seebeck coefficient (Se) was investigated in dilute magnetic nanofluids (ferrofluids) composed of maghemite magnetic nanoparticles dispersed in dimethyl-sulfoxide (DMSO). A 25% increase in the Se value was found when the external magnetic field was applied perpendicularly to the temperature gradient, reminiscent of an increase in the Soret coefficient (ST, concentration gradient) observed in the same fluids. In-depth analysis of experimental data, however, revealed that different mechanisms are responsible for the observed magneto-thermoelectric and -thermodiffusive phenomena. Possible physical and physico-chemical origins leading to the enhancemen…

FerrofluidMaterials scienceCondensed matter physicsPhysics::Medical PhysicsGeneral EngineeringMaghemiteBioengineering02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesMagnetic fieldPhysics::Fluid DynamicsTemperature gradientNanofluidSeebeck coefficientengineeringMagnetic nanoparticlesGeneral Materials Science0210 nano-technologyConcentration gradientNanoscale advances
researchProduct

Thermodiffusion anisotropy under a magnetic field in ionic liquid-based ferrofluids

2021

International audience; Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at Φ = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m-1) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion c…

[PHYS]Physics [physics]FerrofluidMaterials scienceCondensed matter physics02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesMagnetic fieldchemistry.chemical_compoundDipolechemistryVirial coefficientIonic liquidBistriflimideSmall-angle scattering0210 nano-technologyAnisotropySoft Matter
researchProduct