0000000000437147

AUTHOR

Zhao Chen

Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.

Abstract N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels…

research product

Abstract 1126: Efficacy of BET bromodomain inhibition in Kras-positive non-small cell lung cancer.

Abstract Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as dependency of Kras-dependent tumors on c-Myc function. Unfortunately, drug-like small-molecule inhibitors of KRAS and c-Myc have yet to be realized. The recent discovery in hematologic malignancies that bromodomain inhibition impairs MYC expression and MYC-dependent transcriptional function prompted the possibility of targeting KRAS-driven NSCLC with a potent, prototypical BET bromodomain inhibitor, J…

research product

Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a target in LKB1 Mutant Lung Cancer

Abstract The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase, which coordinates cell growth, polarity, motility, and metabolism. In non–small cell lung carcinoma, LKB1 is somatically inactivated in 25% to 30% of cases, often concurrently with activating KRAS mutations. Here, we used an integrative approach to define novel therapeutic targets in KRAS-driven LKB1-mutant lung cancers. High-throughput RNA interference screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase (DTYMK), which catalyzes dTTP biosynthesis, as synthetica…

research product

Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis

Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluat…

research product

Efficacy of BET Bromodomain Inhibition in Kras-Mutant Non–Small Cell Lung Cancer

Abstract Purpose: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non–small cell lung cance…

research product

Loss of p53 Attenuates the Contribution of IL-6 Deletion on Suppressed Tumor Progression and Extended Survival in Kras-Driven Murine Lung Cancer

Interleukin-6 (IL-6) is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC) reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6(-/-) mice with Kras(G12D) mutant mice, which develop lung tumors after activation of mutant Kras(G12D), to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. Kras(G12D); IL-6(-/-) mice exhibited increased tumor…

research product