0000000000437422

AUTHOR

Shane O'sullivan

showing 2 related works from this author

Studies of Relativistic Jets in Active Galactic Nuclei with SKA

2014

Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli & Rawlings 2004). Most of the fundamental questions about the physics of relativistic jets still remain unanswered, and await high-sensitivity radio instruments such as SKA to solve them. These questions will be addressed specially through analysis of the massive data sets arising from the deep, all-sky surveys (both total and polarimetric flux) from SKA1. Wide-field very-long-baseline-interferometri…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleus010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsJet (particle physics)01 natural sciencesAstrophysical jet0103 physical sciencesVery-long-baseline interferometryInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstrophysics - Astrophysics of GalaxiesGalaxyCharacterization (materials science)13. Climate actionAstrophysics of Galaxies (astro-ph.GA)Brightness temperatureAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsProceedings of Advancing Astrophysics with the Square Kilometre Array — PoS(AASKA14)
researchProduct

A direct comparison of 2D versus 3D diffusion analysis at nanowire electrodes: A finite element analysis and experimental study

2022

In electroanalysis, the benefits accrued by miniaturisation are a key driver in sensor development. Finite element simulations of electrochemical processes occurring at ultramicro- and nano-electrodes are used to provide key insight into experimental design in relation to diffusion profiles and expected currents. The most commonly used method, the diffusion domain approach (DDA) offers a means of reducing a three dimensional design to two dimensions to ease computational demands. However, the DDA approach can be limited when using basic assumptions which can be incorrect, for example that all electrodes in an array are equivalent. Consequently, to get a more realistic view of molecular diff…

Nanowire interdigitated electrode arraySettore ING-IND/23 - Chimica Fisica ApplicataFinite element analysis simulationElectroanalysisGeneral Chemical EngineeringDiffusion domain approachElectrochemistry3D modelling
researchProduct