0000000000445313

AUTHOR

Jorge Espinosa-espinosa

showing 2 related works from this author

Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models

2019

Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSA LR ) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo,…

0301 basic medicinemusculoskeletal diseasesMaleRNA SplicingRNA-binding proteinBiologyMyotonic dystrophychloroquinemuscleblindMyoblasts03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineIn vivomedicineAutophagyMBNL1AnimalsDrosophila ProteinsHumansMyotonic DystrophytherapyMultidisciplinarymyotonic dystrophyMusclesRNANuclear ProteinsRNA-Binding ProteinsChloroquinemedicine.diseaseMyotoniaCell biologyDNA-Binding ProteinsDisease Models Animal030104 developmental biologyPhenotypechemistryPNAS PlusRNA splicingDrosophilaFemaleTrinucleotide repeat expansion030217 neurology & neurosurgery
researchProduct

Preclinical characterization of antagomiR-218 as a potential treatment for myotonic dystrophy

2021

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-d…

antisense oligonucleotidetissue distributionRM1-950BiologyMyotonic dystrophyTranscriptomechemistry.chemical_compoundalternative splicingtranscriptomicsAtrophyDrug DiscoverymicroRNAmedicineMBNL1AntagomirCTG repeat expansionstherapeutic gene modulationCTG repeat expansions MBNL1 protein alternative splicing antisense oligonucleotide microRNAs myotonic dystrophy therapeutic gene modulation tissue distribution transcriptomicsmyotonic dystrophyMyogenesisMyotoniamedicine.diseasemicroRNAschemistryCancer researchMolecular MedicineOriginal ArticleTherapeutics. PharmacologyMBNL1 protein
researchProduct