0000000000445314

AUTHOR

Miren Zulaica

Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models

Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSA LR ) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo,…

research product

Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers.

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in …

research product