0000000000445511

AUTHOR

Aleksandra Bołdys

Insight into the Evolving Role of PCSK9

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the last discovered member of the family of proprotein convertases (PCs), mainly synthetized in hepatic cells. This serine protease plays a pivotal role in the reduction of the number of low-density lipoprotein receptors (LDLRs) on the surface of hepatocytes, which leads to an increase in the level of cholesterol in the blood. This mechanism and the fact that gain of function (GOF) mutations in PCSK9 are responsible for causing familial hypercholesterolemia whereas loss-of-function (LOF) mutations are associated with hypocholesterolemia, prompted the invention of drugs that block PCSK9 action. The high efficiency of PCSK9 inhibitors (…

research product

Exenatide prevents statin-related LDL receptor increase and improves insulin secretion in pancreatic beta cells (1.1E7) in a protein kinase A-dependent manner

Statins are primary drugs in the treatment of hyperlipidemias. This group of drugs is known for its beneficial pleiotropic effects (e.g., reduction of inflammatory state). However, a growing body of evidence suggests its diabetogenic properties. The culpable mechanism is not completely understood and might be related to the damage to pancreatic beta cells. Therefore, we conceived an in vitro study to explore the impact of atorvastatin on pancreatic islet beta cells line (1.1.E7). We evaluated the influence on viability, insulin, lowdensity lipoprotein (LDL) receptor, and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. A significant drop in mRNA for proinsulin and insulin e…

research product

Exenatide improves antioxidant capacity and reduces the expression of LDL receptors and PCSK9 in human insulin-secreting 1.1E7 cell line subjected to hyperglycemia and oxidative stress

Abstract Introduction GLP-1 receptor agonists (e.g., exenatide) are novel drugs used in the treatment of diabetes. These drugs, working with other mechanisms of action, improve glycemic control by increasing secretion of insulin and improving survival of pancreatic islet beta cells. Alterations in the oxidative stress level or the expression of proteins associated with cholesterol uptake might be responsible for those findings. Currently, there are few in vitro studies on the impact of exenatide antioxidant capacity in human islet beta cell lines and none that assess the influence of exenatide on LDL receptors and PCSK9 under hyperglycemia and oxidative stress. Therefore, we evaluated the i…

research product