0000000000447000
AUTHOR
Tobias Holmgaard
Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization
International audience; The excitation and propagation of strongly confined surface plasmon-polariton (SPP) waveguide modes, supported by 500-nm-wide and 550-nm-high dielectric ridges fabricated on smooth gold films, are investigated at telecommunication wavelengths using a scanning near-field optical microscope. Different tapering structures for coupling of SPPs, excited at bare gold surfaces, into dielectric-loaded SPP waveguide (DLSPPW) modes are considered. The DLSPPW mode confinement and propagation loss are characterized. The DLSPPW mode propagation along an S bend having the smallest curvature radius of 2.48 mu m is shown, demonstrating the potential of DLSPPW technology for the real…
Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides.
International audience; The design, fabrication, characterization, and modeling of basic building blocks of plasmonic circuitry based on dielectric- loaded surface polariton waveguides, such as bends, splitters, and Mach- Zehnder interferometers are presented. The plasmonic components are realized by depositing subwavelength dielectric ridges on a smooth gold film using mass-production- compatible UV-photolithography. The near-field characterization at telecommunication wavelengths shows the strong mode confinement and low radiation and bend losses. The performance of the devices is found in good agreement with results obtained by full vectorial three-dimensional finite element simulations.…
Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides
International audience; We consider wavelength-selective splitting of radiation using directional couplers (DCs) formed by dielectric-loaded surface-plasmon-polariton waveguides (DLSPPWs). The DCs were fabricated by depositing subwavelength-sized polymer ridges on a gold film using large-scale UV photolithography and characterized at telecommunications wavelengths with near-field microscopy. We demonstrate a DLSPPW-based 45-mu m-long DC comprising 3 mu m offset S bends and 25-mu m-long parallel waveguides that changes from the "through" state at 1500 nm to 3 dB splitting at 1600 nm, and show that a 50.5-mu m-long DC should enable complete separation of the radiation channels at 1400 and 162…
Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths
International audience; The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured an…
Dielectric-loaded plasmonic waveguide-ring resonators
International audience; Using near-field microscopy, the performance of dielectric-loaded plasmonic waveguide-ring resonators (WRRs) operating at telecom wavelengths is investigated for various waveguide-ring separations. It is demonstrated that compact ( footprint similar to 150 mu m(2)) and efficient ( extinction ratio similar to 13 dB) WRR-based filters can be realized using UV-lithography. The WRR wavelength responses measured and calculated using the effective-index method are found in good agreement. (c) 2009 Optical Society of America
Excitation and characterization of dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths - art. no. 69880T
International audience; The excitation of surface plasmon-polariton (SPP) waveguide modes in 500-nm-wide and 550-nm-high dielectric ridges deposited on a thin gold film is characterized at telecommunication wavelengths, by application of a scanning near-field optical microscope (SNOM), and by utilizing the finite element method (FEM). Different tapering structures for coupling in SPPs, excited at the bare gold-air interface, are investigated with a SNOM, and the dependence of in coupling efficiency on tapering length is characterized by means of FEM calculations. The performance of this in coupling method is compared to an alternative excitation scheme, where the effective index of SPPs in …