0000000000447221

AUTHOR

G. C. Rossi

showing 4 related works from this author

B-physics computations from Nf=2 tmQCD

2013

We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.

QuarkTop quarkParticle physicsHigh Energy Physics::LatticeNuclear TheoryLattice field theoryFOS: Physical sciencesDown quark01 natural sciencesBottom quarkB physicsNuclear physicsHigh Energy Physics - LatticePion0103 physical sciences010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicslattice gauge theoriesHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyParticle Physics - LatticeLattice QCDSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciB physics; lattice gauge theoriesUp quarkHigh Energy Physics::ExperimentPoS(LATTICE 2013)382
researchProduct

Up, down, strange and charm quark masses withNf=2+1+1twisted mass lattice QCD

2014

Abstract We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 – 450 MeV , allowing for accurate continuum limit and controlled chiral extrapolation. The quark …

QuarkPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsStrange quarkParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryLattice QCD7. Clean energySigma baryonCharm quarkNuclear physicsPionUp quarkHigh Energy Physics::ExperimentNuclear ExperimentNuclear Physics B
researchProduct

Dynamical twisted mass fermions with light quarks: simulation and analysis details

2008

In a recent paper [hep-lat/0701012] we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theo…

QuarkParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeLattice field theoryGeneral Physics and AstronomyFOS: Physical sciencesHybrid Monte Carlo algorithmLattice QCD01 natural sciencesRenormalizationStochastic quark propagatorsTheoretical physicsHigh Energy Physics - LatticeLattice gauge theory0103 physical sciencesHybrid Monte Carlo algorithm; Lattice gauge theory; Lattice QCD; Stochastic quark propagators010306 general physicsPhysicsQuantum chromodynamics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)FísicaLattice QCDFermionSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciLattice gauge theoryHardware and Architectureddc:004
researchProduct

Dynamical twisted mass fermions with light quarks

2007

We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \bar{l}_3 and \bar{l}_4 are evaluated with small statistical errors.

QuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryMONTE-CARLO ALGORITHMCHIRAL PERTURBATION-THEORY; MONTE-CARLO ALGORITHM; GROSS-NEVEU MODEL; YANG-MILLS THEORY; LATTICE QCD; PHASE-STRUCTURE; WILSON QUARKS; HMC ALGORITHM; GAUGE ACTIONS; 2 FLAVORSHigh Energy Physics::LatticeLattice field theoryScalar (mathematics)FOS: Physical sciences2 FLAVORSGAUGE ACTIONS01 natural sciences7. Clean energyCHIRAL PERTURBATION-THEORYLATTICE QCDHigh Energy Physics - LatticeGross–Neveu modelWILSON QUARKS0103 physical sciencesddc:530Twist010306 general physicsPhysics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaGROSS-NEVEU MODELFermionLattice QCDSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciYANG-MILLS THEORYPHASE-STRUCTUREHMC ALGORITHM
researchProduct