Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives
The novel 1,4-dihydropyridine derivatives containing the cationic pyridine moiety at the position 4, and the N-propargyl group as a substituent at position 1 of the 1,4-DHP cycle were designed, synthesised, and assessed in biological tests. Among all the novel compounds, the 4-(N-dodecyl) pyridinium group-containing compounds 11 (without the N-propargyl group) and 12 (with the N-propargyl group) demonstrated the highest calcium antagonistic properties against neuroblastoma SH-SY5Y (IC50 about 5–14 mM) and the vascular smooth muscle A7r5 cell (IC50 – 0.6–0.7 mM) lines, indicating that they predominantly target the L-type calcium channels. These compounds showed a slight total antioxidant act…
Gene delivery agents possessing antiradical activity: self-assembling cationic amphiphilic 1,4-dihydropyridine derivatives
Seventeen 1,4-dihydropyridine (1,4-DHP) amphiphiles including differently substituted pyridinium, pyrazinium, N-methyl piperidinium or N-methyl morpholinium moieties as the cationic head-group of the molecule have been designed and synthesised. 1,4-DHP amphiphiles have been earlier proposed as a promising tool for plasmid DNA (pDNA) delivery in vitro. In this work the ability of the 1,4-DHP amphiphiles to self-assemble, to bind pDNA and to transfer it into the cells as well as the cytotoxicity of 1,4-DHP amphiphiles–pDNA complexes was studied. Furthermore, antiradical activity (ARA) of the 1,4-DHP derivatives was determined. We have revealed that all new 1,4-DHP amphiphiles possessed self-a…