0000000000451304
AUTHOR
C. Crawford
Charge Form Factor of the Neutron at Low Momentum Transfer from theH→2(e→,e′n)H1Reaction
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio ${G}_{E}^{n}/{G}_{M}^{n}$ was extracted from the beam-target vector asymmetry ${A}_{\mathrm{ed}}^{V}$ at four-momentum transfers ${Q}^{2}=0.14$, 0.20, 0.29, and $0.42\text{ }\text{ }(\mathrm{GeV}/c{)}^{2}$.
The BLAST experiment
The Bates large acceptance spectrometer toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The detector and experimental program were designed to study, in a systematic manner, the spin-dependent electromagnetic interaction in few-nucleon systems. As such the data will provide improved measurements for neutron, proton, and deuteron form factors. The data will also allow details of the reaction mechanism, such as the role of final state interactions, pion production, and resonances to be studied. The experiment used: a longitudinally polarized electron beam stored in the South Hall Storage Ring; a highly polarized, isotopically pure, inter…