0000000000452392
AUTHOR
Larissa Alexandrova
Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs
[EN] In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)(2)] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)(2)] concentration in three different polymeric matrices based on the PBI structure, poly(2,2 '-(m-phenylene)-5,5 '-bibenzimidazole) (PBI-1), poly[2,2 '-(p-oxydiphenylene)-5,5 '-bibenzimidazole] (PBI-2) and poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) (PBI-3), have been investigated. The conducti…
Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications
[EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PE…