0000000000452854

AUTHOR

Gloria Sancho-andrés

0000-0001-6759-8543

showing 3 related works from this author

Sorting signals for PIN1 trafficking and localization

2016

PIN-FORMED (PIN) family proteins direct polar auxin transport based on their asymmetric (polar) localization at the plasma membrane. In the case of PIN1, it mainly localizes to the basal (rootward) plasma membrane domain of stele cells in root meristems. Vesicular trafficking events, such as clathrin-dependent PIN1 endocytosis and polar recycling, are probably the main determinants for PIN1 polar localization. However, very little is known about the signals which may be involved in binding the μ-adaptin subunit of clathrin adaptor complexes (APs) for sorting of PIN1 within clathrin-coated vesicles, which can determine its trafficking and localization. We have performed a systematic mutagene…

0301 basic medicineArabidopsis ProteinsVesicleClathrin adaptor complexCell MembraneMembrane Transport ProteinsPlant ScienceBiologyEndocytosisClathrinEndocytosisAdaptor Protein Complex mu SubunitsArticle AddendumCell biologyAdaptor Proteins Vesicular Transport03 medical and health sciences030104 developmental biologybiology.proteinClathrin adaptor proteinsPolar auxin transportTyrosineSecretory pathwayPlant Signaling & Behavior
researchProduct

Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier

2016

In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found …

0106 biological sciences0301 basic medicinePhysiologyPhenylalanineGreen Fluorescent ProteinsMutantArabidopsisPlant ScienceProtein Sorting SignalsEndoplasmic ReticulumEndocytosis01 natural sciencesClathrin03 medical and health sciencesCytosolGeneticsGuanine Nucleotide Exchange FactorsSecretory pathwaybiologyArabidopsis ProteinsEndoplasmic reticulumMembrane Transport ProteinsSignal transducing adaptor proteinArticlesPlants Genetically ModifiedClathrinEndocytosisAdaptor Protein Complex mu SubunitsTransport proteinCell biologyProtein Transport030104 developmental biologyProtein Sorting SignalsMutationbiology.protein010606 plant biology & botanyPlant Physiology
researchProduct

Identification of Trans-Golgi Network Proteins in Arabidopsis thaliana Root Tissue

2014

Knowledge of protein subcellular localization assists in the elucidation of protein function and understanding of different biological mechanisms that occur at discrete subcellular niches. Organelle-centric proteomics enables localization of thousands of proteins simultaneously. Although such techniques have successfully allowed organelle protein catalogues to be achieved, they rely on the purification or significant enrichment of the organelle of interest, which is not achievable for many organelles. Incomplete separation of organelles leads to false discoveries, with erroneous assignments. Proteomics methods that measure the distribution patterns of specific organelle markers along densit…

ProteomicsArabidopsis thalianaArabidopsisorganelle proteomicsProteomicsPlant RootsBiochemistryArticlesymbols.namesakeArtificial IntelligenceTandem Mass SpectrometryArabidopsisOrganelleArabidopsis thalianaChromatography Reverse-PhaseimmunoisolationbiologyArabidopsis Proteinstrans-Golgi networkGeneral ChemistryGolgi apparatusbiology.organism_classificationSubcellular localizationLOPITCell biologyIsobaric labelingphenoDiscomachine learningsymbolsIdentification (biology)Journal of Proteome Research
researchProduct