0000000000454851

AUTHOR

Michel Rossignol

Plant proteome analysis

Proteome analysis is becoming a powerful tool in the functional characterization of plants. Due to the availability of vast nucleotide sequence information and based on the progress achieved in sensitive and rapid protein identification by mass spectrometry, proteome approaches open up new perspectives to analyze the complex functions of model plants and crop species at different levels. In this review, an overview is given on proteome studies performed to analyze whole plants or specific tissues with particular emphasis on important physiological processes such as germination. The chapter on subcellular proteome analysis of plants focuses on the progress achieved for plastids and mitochond…

research product

Active vanadate-sensitive H+ translocation in corn roots membrane vesicles and proteoliposomes

Abstract A member fraction from corn roots which contains a vanadate-sensitive ATPase activity has been prepared. The specific activity at 38°C is between 3 and mol 12 μmol · min −1 · mg −1 , depending on the age of roots. Addition of ATP promotes a very rapid quenching of the fluorescence of 9-amino-6-chloro-3-methoxy-acridin (ACMA). Proton pumping exhibits a delayed sensitivity to vanadate but is strongly and instantaneously inhibited by the new inhibitor SW 26. Both proton pumping, measured by the initial quenching rate, and ATP hydrolysis show maximum activities at ATP concentrations in the millimolar range, but the apparent K m -value for hydrolysis is higher than that observed for pro…

research product

Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants

 voir Addenda, notes additionnelles complétant l'article : "Dahan, J., Hammoudi, V., Wendehenne, D., Bourque, S. (2011). Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco. Plant signaling & behavior, 6 (11), 1865-1867. DOI : 10.4161/psb.6.11.17848".; International audience; Plant resistance to pathogen attack is often associated with a localized programmed cell death called hypersensitive response (HR). How this cell death is controlled remains largely unknown. Upon treatment with cryptogein, an elicitor of tobacco defence and cell death, we identified NtHD2a and NtHD2b, two redundant isoforms of type-2 nuclear histone deacetylases (HDACs…

research product

Functional reconstitution of a proton-translocating system responsive to fusicoccin

Crude fusicoccin binding proteins and a partially purified plasma membrane H+-transporting ATPase (EC 3.6.1.34), both solubilized from maize tissues, were simultaneously inserted into liposomes by the freeze-thaw method. ATP-driven intravesicular acidification in the proteoliposomes, measured by the fluorescence quenching of the dye 9-amino-6-chloro-2-methoxyacridine, markedly increased upon addition of fusicoccin to the reconstituted system. This effect could not be observed when binding sites and ATPase preparations were separately reconstituted into the proteoliposomes, thus demonstrating that fusicoccin binding to its receptor is a prerequisite for ATPase stimulation.

research product

Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.

International audience; A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, w…

research product

Cercospora beticola Toxin Inhibits Vanadate-Sensitive H+ Transport in Corn Root Membrane Vesicles

The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H(+)-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H(+)-ATPase. C. beticola toxin markedly inhibited ATP dependent H(+)-transport, and this e…

research product

Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions.

When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.…

research product