0000000000454938
AUTHOR
Gualtiero Gusmano
Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition
Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…
Morphology and structure of electrospun CoFe2O4/multi-wall carbon nanotubes composite nanofibers
CoFe2O4/multiwall carbon nanotubes (MWCNTs) composite nanofibers were produced by electrospinning a dispersion of MWCNTs in a solution of polyvinylpyrrolidone, iron(III) nitrate nonahydrate, cobalt (II) acetate tetrahydrate, absolute ethanol and H2O. Microstructure was examined by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). Thermal behaviour was studied by thermogravimetry and differential thermal analysis (TG-DTA) and phase analysis of calcined fibers was performed by X-ray diffraction (XRD). Upon thermal treatment at 450 °C defect-free, randomly oriented composite fibers having a mean diameter of 60 ± 10 nm were obtained. The results s…