0000000000455368

AUTHOR

Wonkeun Chang

0000-0002-0735-0447

showing 4 related works from this author

Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators

2010

Dissipative soliton resonance (DSR) occurs in the close vicinity of a hypersurface in the space of parameters of the equation governing propagation in a dissipative nonlinear medium. Pulsed solutions can acquire virtually unlimited energies as soon as the equation parameters converge toward that specific hypersurface. Here we extend previous studies that have recently unveiled DSRs from the complex cubic-quintic Ginzburg-Landau equation. We clearly confirm the existence of DSR for a wide range of parameters in both regimes of chromatic dispersion, and we establish general features of the ultra-high-energy pulses that can be found close to a DSR. Application to high-energy mode-locked fiber …

PhysicsHigh energyStatistical and Nonlinear Physics01 natural sciencesResonance (particle physics)Atomic and Molecular Physics and Optics010309 opticsDissipative solitonMode-lockingResearch councilFiber laserQuantum mechanics0103 physical sciences010306 general physicsGinzburg landauJournal of the Optical Society of America B
researchProduct

Roadmap on optical rogue waves and extreme events

2016

Nail Akhmediev et al. ; 38 págs.; 28 figs.

:Ciències de la visió::Òptica física [Àrees temàtiques de la UPC]extreme eventsNonlinear opticsFreak-wavesProcess (engineering)Subject (philosophy)Supercontinuum generationPeregrine soliton01 natural sciences010309 opticsOptics0103 physical sciencesZero-dispersion wavelength[NLIN]Nonlinear Sciences [physics]Rogue wave010306 general physicsModulation instabilityComputingMilieux_MISCELLANEOUSPhysicsÒptica no lineal:Física [Àrees temàtiques de la UPC]Nonlinear schrodinger-equationbusiness.industryGinzburg-Landau equationnonlinear opticsRogue wavesOptical rogue wavesrogue wavesextreme events; nonlinear optics; rogue wavesExtreme eventsValue statisticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVariety (cybernetics)Photonic crystal fibersWork (electrical)Noise-like pulsesPeregrine solitonbusinessScientific terminology
researchProduct

Generating ultra-short high-energy pulses using dissipative soliton resonance: Pulse compression schemes

2011

Dissipative soliton resonance (DSR) refers to a phenomenon where the energy of the stable soliton solution increases to extremely large values in a nonlinear dissipative system modeled by the complex cubic-quintic Ginzburg-Landau equation (CGLE) [1]. It occurs in the vicinity of a specific hyper-surface in the multi-dimensional space of the CGLE parameters. The phenomenon has applications in designing laser oscillators generating ultra-high energy pulses, since the dynamics of such lasers can be well-modeled by the CGLE. The DSR was first found in normally-dispersive media, in concordance with the current design trend for high-energy mode-locked laser oscillators [2–4]. However, we have sho…

PhysicsSoliton (optics)LaserResonance (particle physics)law.inventionDissipative solitonMode-lockinglawPulse compressionQuantum mechanicsQuantum electrodynamicsDispersion (optics)Dissipative systemNonlinear Sciences::Pattern Formation and Solitons2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
researchProduct

Dissipative solitons for mode-locked fiber lasers

2010

The concept of a dissipative optical soliton is applied to interpret various pulse dynamics either predicted numerically or observed experimentally in passively mode-locked fiber lasers. The recently discovered “dissipative soliton resonance” phenomenon and “soliton rain” dynamics are highlighted as prominent examples.

Physicsbusiness.industryPulse dynamicsMode (statistics)Resonance (particle physics)Dissipative solitonNonlinear Sciences::Exactly Solvable and Integrable SystemsFiber laserQuantum mechanicsDissipative systemSolitonPhotonicsbusinessNonlinear Sciences::Pattern Formation and Solitons2010 Photonics Global Conference
researchProduct