0000000000458757

AUTHOR

M.c. Drummond

Lifetime measurements of excited states in $^{162}$W and $^{164}$W and the evolution of collectivity in rare-earth nuclei

International audience; Lifetimes of the first excited 2+ states in the extremely neutron-deficient $^{162}$W and $^{164}$W nuclei have been measured using the recoil distance Doppler shift technique. Experimental B(E2) data for the isotopic chains of hafnium, tungsten, and osmium, from the midshell region near the β-stability line towards the N=82 closed shell and the most neutron-deficient nuclides, are compared with predictions of nuclear deformations and 21+→0g.s.+ reduced transition strengths from different classes of state-of-the-art theoretical model calculations. The results reveal striking differences and deficiencies in the predictive power of current nuclear structure models.

research product

Low-lying excited states in the neutron-deficient isotopes 163Os and 165Os

Excited states in the neutron-deficient isotopes 163Os and 165Os were identified using the JUROGAM and GREAT spectrometers in conjunction with the RITU gas-filled separator. The 163Os and 165Os nuclei were populated via the 106Cd(60Ni,3n) and 92Mo(78Kr,2p3n) reactions at bombarding energies of 270 MeV and 357 MeV, respectively. Gamma-ray emissions from these nuclei have been established unambiguously using the recoil-decay tagging technique and a coincidence analysis has allowed level schemes to be established. These results suggest that the yrast states are based upon negative-parity configurations originating from the νf7/2 and νh9/2 orbitals. peerReviewed

research product

Population of a low-spin positive-parity band from high-spin intruder states in Au: The two-state mixing effect

The extremely neutron-deficient isotopes $^{177,179}$Au were studied by means of in-beam γ-ray spectroscopy. Specific tagging techniques, α-decay tagging in $^{177}$Au and isomer tagging in $^{179}$Au, were used for these studies. Feeding of positive-parity, nearly spherical states, which are associated with 2d3/2 and 3s1/2 proton-hole configurations, from the 1i13/2 proton-intruder configuration was observed in $^{177}$Au. Such a decay path has no precedent in odd-Au isotopes and it is explained by the effect of mixing of wave functions of the initial state.

research product

Characterizing the atomic mass surface beyond the proton drip line via {\alpha}-decay measurements of the {\pi}s1/2 ground state of 165Re and the {\pi}h11/2 isomer in 161Ta

The α-decay chains originating from the πs1/2 and πh11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of α radioactivities have been correlated with 173Aum leading to a measurement of the α decay of 161Tam. It has been found that the known α decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt γ rays feeding the ground state of 173Au. This prompt γ radiation was used to aid the study of the α-decay chain originating from the πs1/2 state in 173Au. Three generations of α decays have been correlated with this stat…

research product