0000000000459662

AUTHOR

Abdesslem Djerdir

showing 3 related works from this author

Adaptive control of hybrid vehicle depending on driving cycle analysis

2013

The most adapted energy management in hybrid electric vehicles depends on the current driving situation. This paper describes a novel control strategy based on driving cycle recognition. A Driving Cycle Recognition Algorithm (DCRA) is firstly presented. It allows recognition between three driving modes: urban, suburban and highway. A real-time control strategy is then defined based on fuzzy logic using DCRA. Results are presented and compared to fuzzy logic controllers parametrized for urban or highway cycles.

EngineeringAdaptive controlbusiness.industryEnergy managementControl (management)Control engineeringFuzzy control systemRecognition algorithmbusinessHybrid vehicleFuzzy logicDriving cycleIECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society
researchProduct

Energy management of a thermally coupled fuel cell system and metal hydride tank

2019

International audience; Being produced from renewable energy, hydrogen is one of the most efficient energy carriers of the future. Using metal alloys, hydrogen can be stored and transported at a low cost, in a safe and effective manner. However, most metals react with hydrogen to form a compound called metal hydride (MH). This reaction is an exothermic process, and as a result releases heat. With sufficient heat supply, hydrogen can be released from the as-formed metal hydride. In this work, we propose an integrated power system of a proton exchange membrane fuel cell (PEMFC) together with a hydride tank designed for vehicle use. We investigate different aspects for developing metal hydride…

PILE A COMBUSTIBLEMaterials scienceHydrogenExothermic processHYDROGEN TANKIntermetallicEnergy Engineering and Power Technologychemistry.chemical_elementProton exchange membrane fuel cellENERGIE02 engineering and technology010402 general chemistry7. Clean energy01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.AUTO]Engineering Sciences [physics]/AutomaticHydrogen storage[SPI]Engineering Sciences [physics]Operating temperatureTHERMAL COUPLINGENERGY MANAGEMENT[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph][SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]COUPLAGE[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph]Renewable Energy Sustainability and the Environmentbusiness.industryHydride[SPI.NRJ]Engineering Sciences [physics]/Electric power021001 nanoscience & nanotechnologyCondensed Matter PhysicsFUEL CELL0104 chemical sciencesRenewable energyFuel TechnologyChemical engineeringchemistryHYDROGENE[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]0210 nano-technologybusiness
researchProduct

Innovative method to estimate state of charge of the hydride hydrogen tank: application of fuel cell electric vehicles

2021

International audience; Significant attention has been paid to metal hydrides (MH) as an environmentally friendly and safe way to store hydrogen. This technology has considerable potential for the application of embedded hydrogen storage in fuel cell electric vehicles, but its widespread application faces a major problem in terms of estimating the remaining hydrogen amount in the tank. In this work, a new method is proposed for estimating the state of charge (SoC) of the hydrogen hydride tank (HHT) by application of piezoelectric material. The idea is to cover the entire inner wall of the metal-hydride tank with a layer of piezoelectric material. During the process of hydrogen absorption, t…

0209 industrial biotechnologyMaterials scienceHydrogen020209 energychemistry.chemical_element02 engineering and technologyHydrogen tank7. Clean energy[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.AUTO]Engineering Sciences [physics]/AutomaticMetal020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineering[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Waste managementHydride[SPI.NRJ]Engineering Sciences [physics]/Electric powerPiezoelectricityEnvironmentally friendlyState of chargechemistryHardware and ArchitectureMechanics of MaterialsModeling and Simulationvisual_artvisual_art.visual_art_medium[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Fuel cellsSoftware
researchProduct